SRGAN: Employ a generative adversarial network (GAN) [1] for
image super-resolution (SR)

Perceptual Loss: Optimize a perceptual loss function based on a
content loss calculated in VGG feature space [2,4] and a adversarial
loss [1,3] that pushes the solutions to the natural image manifold.

MOS-Testing: Perform an extensive mean-opinion-score (MOS)
test to confirm hugely significant gains in perceptual quality and
limitations of mean-squared-error (MSE) based quality measures.

Super-resolve a low-resolution input image ILR that was
obtained by 4x downscaling a high-resolution image IHR. We
train a convolutional neural network (CNN) with optimal
parameters such that:

\[
\theta_G = \arg\min_{\theta_D} \frac{1}{N} \sum_{n=1}^{N} I_{SR}(G_{\theta_G}(I_{LR}), I_{HR})
\]

The Limitation of MSE based optimization is that it encourages
average-like solutions that are overly smooth and generally not
reside on the manifold of natural images.

MOS averaged over scores from 26 human raters. Scores range
from 1 (worst, nearest neighbor) to 5 (best, original HR image)

Influence of Network Depth
- Higher performance using skip-
 connections
- Depth is beneficial for PSNR
- SRGAN gets more difficult to
 train for deeper networks

Investigation of content loss
- Loss on higher level VGG features yields better texture detail

Comparison to state of the art (BSD100)
- SRGAN closes the MOS gap between
 the state of the art and original high
 resolution images by more than 50%

Evaluation Measures
- PSNR
- MOS

ExperimentsAndResults

Visuals

References
 fficient statistics”, ICLR, 2016