

STD2P: RGBD Semantic Segmentation Using Spatio-Temporal Data-Driven Pooling Yang He¹, Wei-Chen Chiu¹, Margret Keuper², Mario Fritz¹ ¹ Max Planck Institute for Informatics, Saarland Informatics Campus, Germany ² University of Mannheim, Germany

Motivation

SAARLANDES

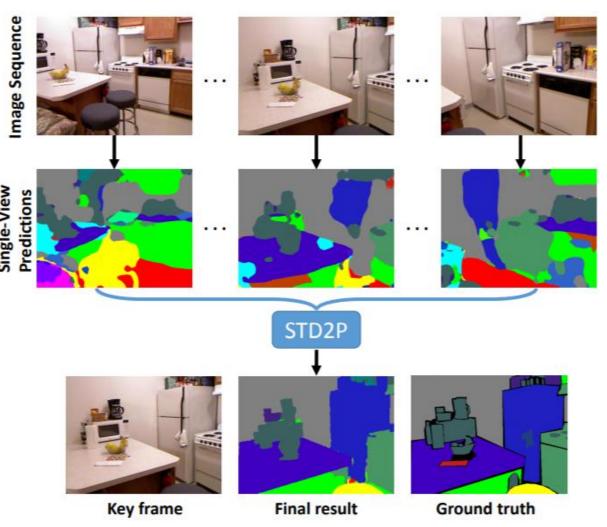
- Rich information from videos
- Accurate boundary and datadriven receptive field from superpixels
- Robust region correspondence from superpixels
- Leverage large-scale unlabeled data

Contribution

- Multi-view region-based neural network for semantic segmentation
- Semi-supervised learning from partially labeled video
- State-of-the-art results on various datasets
- *New layer* compatible with existing architectures. Please visit our project page for *download*:

Previous work

- Comparison to bilateral inceptions [1]: *faster computation and less memory cost* with pooling operations.
- Comparison to region-based semantic segmentation with endto-end training [2]: temporal pooling allows us to utilize unlabeled frames as well as better prediction.
- Comparison to SemanticFusion [3]: our network is *trained with multiple-frame input* and their correspondences instead of training a single frame prediction model and a fusion model separately.



Method

Region Correspondence Superpixel: RGBD MCG [4] Optical flow: EpicFlow [5] a matching rejection scheme:

 $\min(\overrightarrow{IoU_{tu}}, \overrightarrow{IoU_{tu}}) > \tau$

- Spatial pooling $O_{s}(i,c,j) = \frac{1}{|\Omega_{ij}|} \sum_{(x,y)\in\Omega_{ij}} I_{s}(i,c,x,y)$
- Temporal pooling

$$O_t(c,j) = \frac{1}{K} \sum_{\Omega_{ij} \neq \emptyset} I_t(i,c,j)$$

Region-to-pixel mapping

 $O_r(c, x, y) = I_r(c, j), \quad S_{tar}(x, y) = j$

D2P

ິ

Correspondence

Region

Posterior

Evaluation settings

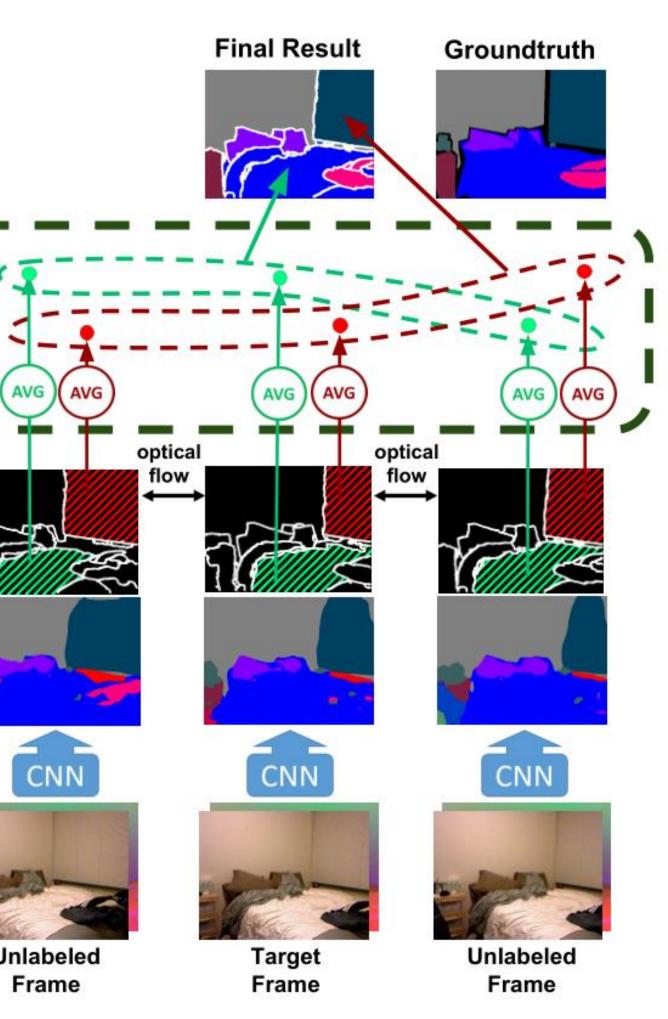
- Datasets and tasks: NYUDv2 40-class, 13-class and 4-class tasks, SUN3D 33-class task.
- Four evaluation metrics: Pixel Acc., Mean Acc., Mean IoU, f.w. IoU.

References

[1] R. Gadde et al., Superpixel Convolutional Networks using Bilateral Inceptions, ECCV, 2016. [2] H. Caesar et al., Region-based semantic segmentation with end-to-end training, ECCV, 2016. [3] J. McCormac et al., SemanticFusion: Dense 3D Semantic Mapping with Convolutional Neural

Networks. ICRA, 2017. [4] S. Gupta et al., Learning Rich Features from RGB-D Images for Object Detection and Segmentation, ECCV, 2014.

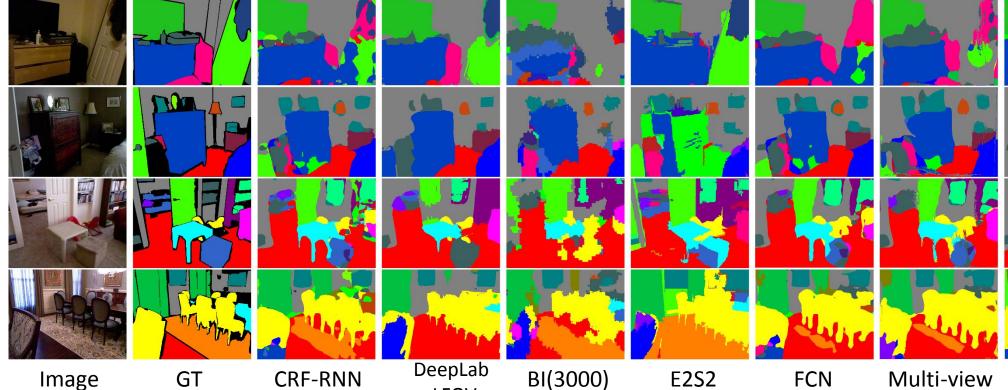
[5] J. Revaud et al., EpicFlow: Edge-Preserving Interpolation of Correspondences for Optical Flow, CVPR, 2015.



The different settings about leveraging temporal information:

Model	Training	Test
Superpixel model Superpixel+ model	$\stackrel{\times}{\checkmark}$	× ×
Full model	\checkmark	\checkmark

Results



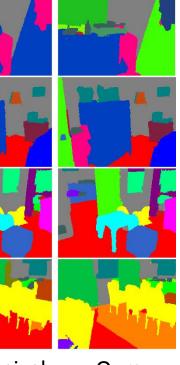
Comparison to state-of-the-art methods on NYUDv2 40-class task

Methods	Pixel Acc.	Mean Acc.	Mean IoU
Mutex Constraints	63.8	-	31.5
RGBD R-CNN	60.3	-	28.6
Bayesian SegNet	68.0	45.8	32.4
Multi-Scale CNN	65.6	45.1	34.1
CRF-RNN	66.3	48.9	35.4
DeepLab	68.7	46.9	36.8
DeepLab-LFOV	70.3	49.6	<u>39.4</u>
BI (1000)	57.7	37.8	27.1
BI (3000)	58.9	39.3	27.7
E2S2	58.1	52.9	31.0
FCN	65.4	46.1	34.0
Ours (superpixel)	68.5	48.7	36.0
Ours (superpixel+)	68.4	52.1	38.1
Ours (full model)	<u>70.1</u>	53.8	40.1

Results on SUN3D dataset

Methods	Pixel Acc.	Mean Acc.	Mean IoU	f.w. loU
Mutex Constraints	65.7	-	28.2	<u>51</u> .
CRF-RNN	59.8	-	25.5	$\frac{31}{43}$
DeepLab	60.9	30.7	24.0	44.
DeepLab-LFOV	62.3	35.3	28.2	46.
BI (1000)	53.8	31.1	20.8	37.
BI (3000)	53.9	31.6	21.1	37.
E2S2	56.7	47.7	27.2	43.
FCN	58.8	38.5	26.1	43.
Ours (superpixel+)	62.5	40.8	29.4	47.
Ours (full model)	<u>65.5</u>	<u>41.2</u>	32.9	51.

Qualitative results on NYUDv2 40-class task



BI(3000)

E2S2

• Average vs. Max

Spatial/Temporal	Pixel Acc.	Mean Acc.	Mean IoU	f.w. IoU
AVG / AVG	70.1	53.8	40.1	55.7
AVG / MAX	69.4	51.0	38.0	54.4
MAX / AVG	66.4	45.4	33.8	49.6
MAX / MAX	64.9	44.5	32.1	47.9

48.5

47.0

51.4

51.0

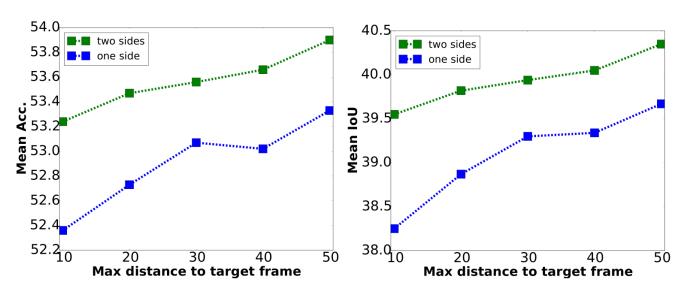
52.5 <u>54.7</u> 41.9

43.0

Region based vs. Pixel based

Methods	Pixel Acc.	Mean Acc.	Mean IoU	f.w. IoU
FCN	65.4	46.1	34.0	49.5
Pixel Correspondence	66.2	45.9	34.6	50.2
Superpixel Correspondence	70.1	53.8	40.1	55.7

Wider is better



Comparison to multi-view methods on NYUDv2 4-class and 13-class tasks

Methods	Pixel Acc.	Mean Acc.	Pixel Acc.	Mean Acc.
Couprie <i>et al</i> .	64.5	63.5	52.4	36.2
Hermans <i>et al</i> .	69.0	68.1	54.2	48.0
Stückler et al.	70.6	66.8	-	-
McCormac et al.	-	-	69.9	63.6
Wang <i>et al</i> .	_	65.3	_	42.2
Wang <i>et al</i> .	-	74.7	-	52.7
Eigen et al.	83.2	<u>82.0</u>	<u>75.4</u>	66.9
Ours (<i>superpixel</i> +) Ours (<i>full model</i>)	82.7 83.6	81.3 82.5	74.8 75.8	<u>67.0</u> 68.4

44.2 49.5 _____ 52.9 54.0 **55.7**