On the Two-View Geometry of Unsynchronized Cameras

C.Albl ${ }^{1}$ Z. Kukelova ${ }^{1}$ A. Fitzgibbon ${ }^{2}$ J. Heller ${ }^{3}$ M. Smid ${ }^{1}$ T. Pajdla ${ }^{1}$
Czech Technical University Prague, CIIRC \& FEE, CZ¹ Microsoft, Cambridge, UK² Magik Eye ${ }^{3}$

WHAT?

- Minimal solvers for two-view geometry with a time shift
- Iterative algorithm for robust space-time camera calibration
- Synchronizes sequences several seconds apart
- Achieves sub-frame synchronization

- Multi-camera systems perform 3D reconstruction, tracking, localization etc.
- They require precise time and space calibration

Existing methods

- Require special content
- Sensitive to outliers and initialization
- Exhaustive and time-consuming

Our method

- Works with general data
- Robust
- Efficient

HOW?

Image trajectory approximation

- Cameras (in a rig) sample a moving object with trajectory $\mathbf{X}\left(t_{j}^{\prime}\right)$ (or moving camera rig+static object) as samples s_{i} and s_{j}^{\prime}

- The object trajectory in the second image $\mathbf{x}^{\prime}\left(t_{j}^{\prime}\right)$ is approximated by a function such that $\mathbf{s}_{i} \longleftrightarrow \mathbf{s}^{\prime}(\beta+\rho i)$

Linearized trajectory

- To solve for F or H and time shift β we assume linear trajectory

$\mathbf{s}^{\prime}(\beta+\rho i) \approx \mathbf{s}^{\prime}\left(\beta_{0}+\rho i\right)+\left(\beta-\beta_{0}\right) \mathbf{v}=\mathbf{s}^{\prime \prime}(\beta+\rho i)$

$$
\mathbf{v}=\mathbf{s}_{j_{0}+d}^{\prime}-\mathbf{s}_{j_{0}}^{\prime}
$$

Epipolar geometry

$$
\mathbf{s}^{\prime}(\beta+\rho i)^{\top} \mathbf{F} \mathbf{s}_{i}=0 \quad \Longleftrightarrow\left(\mathbf{u}_{i}+\beta \mathbf{v}_{i}\right)^{\top} \mathbf{F} \mathbf{s}_{i}=0
$$

Homography

$$
\mathrm{Hs}_{i}=\lambda_{i}\left(\mathbf{u}_{i}+\beta \mathbf{v}_{i}\right)
$$

MINIMAL SOLUTIONS

Epipolar geometry

- $\left(\mathbf{u}_{i}+\beta \mathbf{v}_{i}\right)^{\top} \mathrm{Fs}_{i}=0$ can be written as $\mathrm{Mw}=\mathbf{0}$
$\mathbf{w}=\left[f_{11}, f_{12}, f_{13}, f_{21}, f_{22}, f_{23}, f_{31}, f_{32}, f f_{33}, \beta f_{11}, \beta f_{12}, \beta f_{13}, \beta f_{21}, \beta f_{22}, \beta f_{23}\right]$
- The minimal number of samples - 8
- M is a 8×15 matrix of rank 8
- F defined up to scale, write w using the null space of M

$$
\mathbf{w}=\mathbf{n}_{0}+\sum_{i=1}^{6} \alpha_{i} \mathbf{n}_{i}
$$

- Additionally the elements of \mathbf{w} satisfy

$$
\begin{equation*}
\beta w_{j}=w_{k} \quad \text { for }(j, k) \in\{(1,10), \tag{6,15}
\end{equation*}
$$

- Quite complicated system of 7 polynomial equations in 7 unknowns (solver size 633x649)
- SOLUTION - eliminate β first using elimination ideal method [1] and then solve by automatic generator [2]
- Solver size 194×210 with 16 solutions

Homography

- $\left[\mathbf{u}_{i}+\beta \mathbf{v}_{i}\right]_{\times} H \mathbf{s}_{i}=\mathbf{0}-3$ equations -2 linearly independent
- The minimal number of samples - 4.5 (5)
- Equations corresponding to the first and second row in a matrix form

$$
\mathrm{M} \mathbf{w}=\mathbf{0}
$$

$\mathbf{w}=\left[h_{11}, h_{12}, h_{13}, h_{21}, h_{22}, h_{23}, h_{31}, h_{32}, h_{33}, \beta h_{31}, \beta h_{32}, \beta h_{33}\right]^{\top}$

- M is a 9×12 matrix of rank $9 \longmapsto 3 \mathrm{dim}$ null space

$$
\mathbf{w}=\sum_{i=1}^{3} \gamma_{i} \mathbf{n}_{i}
$$

- H is defined up to scale \longmapsto we can fix $\gamma_{3}=1$
- The elements of w satisfy

$$
w_{10}=\beta w_{7}, w_{11}=\beta w_{8}, w_{12}=\beta w_{9}
$$

- System of 3 quadratic equations in 3 unknowns and 6 monomials
- Solved by G-J elimination of the 3×6 coefficient matrix and computing eigenvalues of a 3×3 matrix

USING RANSAC

- RANSAC use has 2 reasons:

- Outliers in the data, mismatches etc.
- Outliers due to the linearization of the trajectory

- For larger time shifts (multiple frames)
- When time shift is large, increasing interpolation distance (e.g. next 2^{k}-th sample) improves the estimate of β
- Start with interpolation distance $\mathrm{d}=1$ frame
- LOOP

RANSAC F or H and β
IF no improvement in inliers increase d (e.g. $d=2^{k}$) ELSE

Correct the shift by β
END IF
END LOOP

- Algorithm stops when all interpolation distances up to $2^{\text {kmax }}$ have failed to provided more inliers at current time shift estimate

Typical number of iterations for various time shifts (in frames)

$$
\begin{array}{c|c|c|c|c|c}
\beta_{g t} & 0-10 & 10-20 & 20-30 & 30-40 & 40-50 \\
\hline T_{\beta} \text {-new-iter-pmax0 } & 4.7 & 4.3 & 3.5 & 4.1 & 3.8 \\
T_{\beta} \text {-new-iter-pmax6 } & 23 & 22 & 21.2 & 21.6 & 21.2 \\
T_{\beta} \text {-new-iter-pmaxvar } & 18 & 19 & 17.5 & 16.7 & 16.5 \\
\hline
\end{array}
$$

REFERENCES

[1] Z. Kukelova, J. Kileel, B. Sturmfels, and T. Pajdla. A clever elimination strategy for efficient minimal solvers. CVPR, 2017.
[2] Z. Kukelova, M. Bujnak, and T. Pajdla. Automatic generator of minimal problem solvers. ECCV, 2008

