

1. King Abdullah University of Science & Technology (KAUST) 2. School of Data & Computer Science, Sun Yat-sen University (SYSU)

1. Composite Function Minimization Problem $\min_{\mathbf{x}} f(\mathbf{x}) \triangleq \frac{1}{2}\mathbf{x}^T \mathbf{A}\mathbf{x} + \mathbf{x}^T \mathbf{b} + h(\mathbf{x})$ Assumption: A is PSD, $h(\cdot)$ is separable Nonconvex $h(\cdot)$ Convex $h(\cdot)$ $h(\mathbf{x}) = \|\mathbf{x}\|_1$ $h(\mathbf{x}) = \|\mathbf{x}\|_0$ $h(\mathbf{x}) = \begin{cases} \mathbf{0}, & \mathbf{x} \ge \mathbf{0}; \\ \infty, & \text{else.} \end{cases}$ $h(x) = \begin{cases} 0, & \mathbf{x} \in \{0, 1\}^n; \\ \infty, & \text{else.} \end{cases}$ 2. Existing Solution: Proximal Gradient Method $\mathbf{x}^{k+1} \Leftarrow \min_x g(x, x^k) + h(x)$ $\forall \mathbf{z}, \mathbf{x}, q(\mathbf{x}) \leq q(\mathbf{z}) + \langle \nabla q(\mathbf{z}), \mathbf{x} - \mathbf{z} \rangle + \frac{L}{2} \|\mathbf{x} - \mathbf{z}\|_2^2$ $q(\mathbf{x},\mathbf{z})$ $\mathbf{x}^{k+1} = \operatorname{prox}_{\gamma h}(\mathbf{x}^k - \gamma \nabla q(\mathbf{x}^k))$ $\operatorname{prox}_{\tilde{h}}(\mathbf{a}) = \operatorname{arg\,min}_{\mathbf{x}} \ \frac{1}{2} \|\mathbf{x} - \mathbf{a}\|_{2}^{2} + \tilde{h}(\mathbf{x}) = (\mathbf{I} + \partial \tilde{h})^{-1}(\mathbf{a})$ 3. Motivation $\operatorname{prox}_{\tilde{h}}(\mathbf{a}) = \operatorname{arg\,min}_{\mathbf{x}} \ \frac{1}{2} \|\mathbf{x} - \mathbf{a}\|_{\mathbf{B}}^2 + \tilde{h}(\mathbf{x})$ Existing Method New Method $\mathbf{B} = \text{Triangle Matrix}$ $\mathbf{B} =$ Scaled Identity Matrix Closed Form Solution Closed Form Solution Triangle Proximal Operator Proximal Operator $\operatorname{prox}_{\tilde{h}}(\mathbf{a}) = (\mathbf{B} + \partial \tilde{h})^{-1}(\mathbf{a})$ $\operatorname{prox}_{\tilde{h}}(\mathbf{a}) = (\mathbf{I} + \partial \tilde{h})^{-1}(\mathbf{a})$ triangle resolvent of \tilde{h} ? resolvent of \tilde{h} 4. A Toy Problem Classical PGM (constant Classical PGM (constant) - Classical PGM (line search ---- Classical PGM (line search) Accerlated PGM (constant) Accerlated PGM (constant) Accerlated PGM (line search) Accerlated PGM (line sear Matrix Splitting Method Matrix Splitting Method 20 30 Iteration Iteration (a) $\min_{\mathbf{x} \ge \mathbf{0}} \frac{1}{2} \|\mathbf{C}\mathbf{x} - \mathbf{d}\|_2^2$ (b) min $\frac{1}{2} \|\mathbf{C}\mathbf{x} - \mathbf{d}\|_2^2 + \|\mathbf{x}\|_0$ Our matrix splitting method significantly outperforms existing popular proximal gradient methods in term of both efficiency and efficacy.

A Matrix Splitting Method for Composite Function Minimization Ganzhao Yuan^{1,2}, Wei-Shi Zheng², Bernard Ghanem¹

hod

5. Proposed Matrix Splitting Method												
$\mathbf{A} \stackrel{\Delta}{=} \mathbf{L} + \mathbf{D} + \mathbf{L}^{T}$ $\stackrel{\Delta}{=} \underbrace{\mathbf{L} + \frac{1}{\omega} (\mathbf{D} + \theta \mathbf{I})}_{\mathbf{B}} + \underbrace{\mathbf{L}^{T} + \frac{1}{\omega} ((\omega - 1)\mathbf{D} - \theta \mathbf{I})}_{\mathbf{C}} \mathbf{D} = \begin{bmatrix} \mathbf{A}_{1,1} & 0 & 0 \\ 0 & \mathbf{A}_{2,2} & 0 \\ 0 & 0 & \mathbf{A}_{3,3} \end{bmatrix}, \mathbf{L} = \underbrace{\mathbf{D}}_{\mathbf{C}} \mathbf{D} = \begin{bmatrix} \mathbf{A}_{1,1} & 0 & 0 \\ 0 & \mathbf{A}_{2,2} & 0 \\ 0 & 0 & \mathbf{A}_{3,3} \end{bmatrix}, \mathbf{L} = \underbrace{\mathbf{D}}_{\mathbf{C}} \mathbf{D} = \begin{bmatrix} \mathbf{A}_{1,1} & 0 & 0 \\ 0 & \mathbf{A}_{2,2} & 0 \\ 0 & 0 & \mathbf{A}_{3,3} \end{bmatrix}, \mathbf{L} = \underbrace{\mathbf{D}}_{\mathbf{C}} \mathbf{D} = \begin{bmatrix} \mathbf{A}_{1,1} & 0 & 0 \\ 0 & \mathbf{A}_{2,2} & 0 \\ 0 & 0 & \mathbf{A}_{3,3} \end{bmatrix}, \mathbf{L} = \underbrace{\mathbf{D}}_{\mathbf{C}} \mathbf{D} = \begin{bmatrix} \mathbf{A}_{1,1} & 0 & 0 \\ 0 & \mathbf{A}_{2,2} & 0 \\ 0 & 0 & \mathbf{A}_{3,3} \end{bmatrix}, \mathbf{L} = \underbrace{\mathbf{D}}_{\mathbf{C}} \mathbf{D} = \begin{bmatrix} \mathbf{A}_{1,1} & 0 & 0 \\ 0 & \mathbf{A}_{2,2} & 0 \\ 0 & 0 & \mathbf{A}_{3,3} \end{bmatrix}, \mathbf{L} = \underbrace{\mathbf{D}}_{\mathbf{C}} \mathbf{D} = \begin{bmatrix} \mathbf{A}_{1,1} & 0 & 0 \\ 0 & \mathbf{A}_{2,2} & 0 \\ 0 & 0 & \mathbf{A}_{3,3} \end{bmatrix}, \mathbf{D} = \begin{bmatrix} \mathbf{A}_{1,1} & 0 & 0 \\ 0 & \mathbf{A}_{2,2} & 0 \\ 0 & \mathbf{A}_{3,3} \end{bmatrix}, \mathbf{D} = \begin{bmatrix} \mathbf{A}_{1,1} & 0 & 0 \\ 0 & \mathbf{A}_{2,2} & 0 \\ 0 & \mathbf{A}_{3,3} \end{bmatrix}, \mathbf{D} = \begin{bmatrix} \mathbf{A}_{1,1} & 0 & 0 \\ 0 & \mathbf{A}_{2,2} & 0 \\ 0 & \mathbf{A}_{3,3} \end{bmatrix}, \mathbf{D} = \begin{bmatrix} \mathbf{A}_{1,2} & \mathbf{A}_{2,2} & 0 \\ 0 & \mathbf{A}_{3,3} \end{bmatrix}, \mathbf{D} = \begin{bmatrix} \mathbf{A}_{1,2} & \mathbf{A}_{2,2} & 0 \\ 0 & \mathbf{A}_{3,3} \end{bmatrix}, \mathbf{D} = \begin{bmatrix} \mathbf{A}_{1,2} & \mathbf{A}_{2,2} & 0 \\ 0 & \mathbf{A}_{3,3} \end{bmatrix}, \mathbf{D} = \begin{bmatrix} \mathbf{A}_{1,2} & \mathbf{A}_{2,2} & \mathbf{A}_{3,3} \end{bmatrix}, \mathbf{D} = \begin{bmatrix} \mathbf{A}_{1,2} & \mathbf{A}_{2,2} & \mathbf{A}_{3,3} \end{bmatrix}, \mathbf{D} = \begin{bmatrix} \mathbf{A}_{1,2} & \mathbf{A}_{2,2} & \mathbf{A}_{3,3} \end{bmatrix}, \mathbf{A}_{3,3} \end{bmatrix}, \mathbf{A}_{3,3} = \begin{bmatrix} \mathbf{A}_{1,2} & \mathbf{A}_{2,3} & \mathbf{A}_{3,3} \end{bmatrix}, \mathbf{A}_{3,3} = \begin{bmatrix} \mathbf{A}_{1,2} & \mathbf{A}_{2,3} & \mathbf{A}_{3,3} \end{bmatrix}, \mathbf{A}_{3,3} = \begin{bmatrix} \mathbf{A}_{1,2} & \mathbf{A}_{2,3} & \mathbf{A}_{3,3} \end{bmatrix}, \mathbf{A}_{3,3} = \begin{bmatrix} \mathbf{A}_{1,2} & \mathbf{A}_{2,3} & \mathbf{A}_{3,3} \end{bmatrix}, \mathbf{A}_{3,3} = \begin{bmatrix} \mathbf{A}_{1,2} & \mathbf{A}_{2,3} & \mathbf{A}_{3,3} \end{bmatrix}, \mathbf{A}_{3,3} = \begin{bmatrix} \mathbf{A}_{1,3} & \mathbf{A}_{2,3} & \mathbf{A}_{3,3} \end{bmatrix}, \mathbf{A}_{3,3} = \begin{bmatrix} \mathbf{A}_{1,3} & \mathbf{A}_{3,3} & \mathbf{A}_{3,3} \end{bmatrix}, \mathbf{A}_{3,3} = \begin{bmatrix} \mathbf{A}_{1,3} & \mathbf{A}_{3,3} & \mathbf{A}_{3,3} \end{bmatrix}, \mathbf{A}_{3,3} \end{bmatrix}, \mathbf{A}_{3,3} = \begin{bmatrix} \mathbf{A}_{1,3} & \mathbf{A}_{2,3} & \mathbf{A}_{3,3} & \mathbf{A}_{3,3} \end{bmatrix}, \mathbf{A}_{3,3} = \begin{bmatrix} \mathbf{A}_{1,3} & \mathbf{A}_{2,3} & \mathbf{A}_{3,3} & \mathbf{A}_{3,3} & \mathbf{A}_{3,3} \end{bmatrix}, \mathbf{A}_{3,3} = \begin{bmatrix} \mathbf{A}_{1,3} & \mathbf{A}_{2,3} & \mathbf{A}_{3,3} & \mathbf{A}_{3,3} & \mathbf{A}_{3,3} & \mathbf{A}_{3,3} & \mathbf{A}_{3,3} $												
➢ Optimality Condition → Fixed-Point: $\mathbf{x} = \mathcal{T}(\mathbf{x})$ $0 \in (\mathbf{B} + \mathbf{C})\mathbf{x} + \mathbf{b} + \partial h(\mathbf{x})$ $-\mathbf{C}\mathbf{x} - \mathbf{b} \in (\mathbf{B} + \partial h)\mathbf{x}$ $\mathbf{x} \in -(\mathbf{B} + \partial h)^{-1}(\mathbf{C}\mathbf{x} + \mathbf{b})$												
Fixed-Point Iterative Scheme $\mathbf{x}^{k+1} = \mathcal{T}(\mathbf{x}^k) \triangleq (\mathbf{B} + \partial h)$												
How to compute operator $\mathcal{T}(\mathbf{x}^k)$												
find \mathbf{z}^* that: $0 \in \mathbf{B}\mathbf{z}^* + \mathbf{u} + \partial h(\mathbf{z}^*)$, where $\mathbf{u} = \mathbf{b} + \partial h(\mathbf{z}^*)$												
Using forward substitution !												
$0 \in \begin{bmatrix} \mathbf{B}_{1,1} & 0 & 0 & 0 & 0 \\ \mathbf{B}_{2,1} & \mathbf{B}_{2,2} & 0 & 0 & 0 \\ \vdots & \vdots & \ddots & 0 & 0 \\ \mathbf{B}_{n-1,1} & \mathbf{B}_{n-1,2} & \cdots & \mathbf{B}_{n-1,n-1} & 0 \\ \mathbf{B}_{n,1} & \mathbf{B}_{n,2} & \cdots & \mathbf{B}_{n,n-1} & \mathbf{B}_{n,n} \end{bmatrix} \begin{bmatrix} \mathbf{z}_1^* \\ \mathbf{z}_2^* \\ \vdots \\ \mathbf{z}_{n-1}^* \\ \mathbf{z}_n^* \end{bmatrix} + \mathbf{u} + \partial \mathbf{z}_n^*$												
It reduces to 1_dimensional sub_problem												

→ It reduces to 1-dimensional sub-problem

$$0 \in \mathbf{B}_{j,j} \mathbf{z}_j^* + \mathbf{w}_j + \partial h(\mathbf{z}_j^*), \text{ where } \mathbf{w}_j = \mathbf{u}_j + \sum_{i=1}^{j-1} \mathbf{B}_{j,i} \mathbf{z}_i^*$$
$$\mathbf{z}_j^* = t^* \triangleq \arg\min_t \ \frac{1}{2} \mathbf{B}_{j,j} t^2 + \mathbf{w}_j t + h(t)$$

6. Convergence Results

- > Condition $\delta \triangleq \frac{2\theta}{\omega} + \frac{2-\omega}{\omega} \min(diag(\mathbf{D})) > 0$. Simple
- Monotone Non-increasing and Convergent $f(\mathbf{x}^{k+1}) - f(\mathbf{x}^k) \le -\frac{\delta}{2} \|\mathbf{x}^{k+1} - \mathbf{x}^k\|_2^2$
- Q-linear Convergence Rate

$$\frac{f(\mathbf{x}^{k+1}) - f(\mathbf{x}^*)}{f(\mathbf{x}^k) - f(\mathbf{x}^*)} \le \frac{C_1}{1 + C_1}$$

> Iteration Complexity

$$f(\mathbf{x}^{k}) - f(\mathbf{x}^{*}) \leq \begin{cases} u^{0}(\frac{2C_{4}}{2C_{4}+1})^{k}, & \text{if } \sqrt{f^{k} - f^{k+1}} \geq C_{3}/C_{4}, \ \forall k \leq \bar{k} \\ \frac{C_{5}}{\bar{k}}, & \text{if } \sqrt{f^{k} - f^{k+1}} < C_{3}/C_{4}, \ \forall k \geq 0 \end{cases}$$

 $\begin{bmatrix} 0 & 0 & 0 \\ 0 & \mathbf{A}_{3,3} \end{bmatrix}, \ \mathbf{L} = \begin{bmatrix} 0 & 0 & 0 \\ \mathbf{A}_{2,1} & 0 & 0 \\ \mathbf{A}_{3,1} & \mathbf{A}_{3,2} & 0 \end{bmatrix}$

$$(-\mathbf{C}\mathbf{x}^k - \mathbf{b})^{-1}$$

 $\mathbf{u} = \mathbf{b} + \mathbf{C}\mathbf{x}^k$

$$+\mathbf{u}+\partial h(\mathbf{z}^*)$$

Choice
$$\omega \in (0,2), \ \theta = 0.01$$

7. Extension to Nonconvex Case

$$^* \triangleq \operatorname*{arg\,min}_{t}$$

 $\frac{1}{2}\mathbf{B}_{j,j}t^2 + \mathbf{w}_jt + h(t)$ with $M \succeq \nabla^2 f(x^k)$ lassical PGM (constant) Classical PGM (constant) Classical PGM (line search) lassical PGM (line search) [10] [13] ours APG CGD MSM Accerlated PGM (line search Accerlated PGM (line search Matrix Splitting Method Matrix Splitting Method 150 100 100 Iteration Classical PGM (constant)

8. Extension to Matrix Case

 \succ Using the same method to compute $\mathcal{T}(\mathbf{x}^k)$. It reduces to ≻ Condition $\delta \triangleq \min(\theta/\omega + (1-\omega)/\omega \cdot diag(\mathbf{D})) > 0$. Simple Choice $\omega < 1$, $\theta = 0.01$ Convergence Result (Monotonically Nonincreasing and Convergent) $f(\mathbf{x}^{k+1}) - f(\mathbf{x}^k) \le -\frac{\delta}{2} \|\mathbf{x}^{k+1} - \mathbf{x}^k\|_2^2$ $\min_{\mathbf{X}\in\mathbb{R}^{n\times r}} f(\mathbf{X}) \triangleq \frac{1}{2}tr(\mathbf{X}^T \mathbf{A} \mathbf{X}) + tr(\mathbf{X}^T \mathbf{R}) + h(\mathbf{X})$ > Solve the following nonlinear equation w.r.t. Z^* : A = B + C \succ It can be decomposed into independent components. $\mathbf{B}\mathbf{Z}^* + \mathbf{R} + \mathbf{C}\mathbf{X}^k + \partial h(\mathbf{Z}^*) \in \mathbf{0}$ 9. Extension to Non-Quadratic Case > Majorization Minimization $\mathbf{x}^{k+1} \leftarrow \min_x g(x, x^k) + h(x)$ > Quadratic Surrogate (Second Order Upper Bound) $q(x) \le g(x, x^k) \triangleq q(x^k) + \langle \nabla q(x^k), x - x^k \rangle + \frac{1}{2} (x - x^k)^T M(x - x^k)$ \succ Line Search (as in Damped Newton): $\mathbf{x}^{k+1} \leftarrow \mathbf{x}^k + \beta(\mathbf{x}^{k+1} - \mathbf{x}^k)$ **10. Experiments**

> Applications: NMF, Sparse Coding. Using the same method to decompose A

data	n	[17]	[14]	[14]	[10]	[13]	ours	data	n	[17]	[14]	[14]	1
		PG	AS	BPP	APG	CGD	MSM			PG	AS	BPP	
time limit=20								time limit=40					
20news	20	5.001e+06	2.762e+07	8.415e+06	4.528e+06	4.515e+06	4.506e+06	20news	20	4.622e+06	2.762e+07	7.547e+06	4.4
20news	50	5.059e+06	2.762e+07	4.230e+07	3.775e+06	3.544e+06	3.467e+06	20news	50	4.386e+06	2.762e+07	1.562e+07	3.5
20news	100	6.955e+06	5.779e+06	4.453e+07	3.658e+06	3.971e+06	2.902e+06	20news	100	6.486e+06	2.762e+07	4.223e+07	3.1
20news	200	7.675e+06	3.036e+06	1.023e+08	4.431e+06	3.573e+07	2.819e+06	20news	200	6.731e+06	1.934e+07	1.003e+08	3.3
20news	300	1.997e+07	2.762e+07	1.956e+08	4.519e+06	4.621e+07	3.202e+06	20news	300	1.041e+07	2.762e+07	1.932e+08	3.6
COIL	20	2.004e+09	5.480e+09	2.031e+09	1.974e+09	1.976e+09	1.975e+09	COIL	20	1.987e+09	5.141e+09	2.010e+09	1.9
COIL	50	1.412e+09	1.516e+10	6.962e+09	1.291e+09	1.256e+09	1.252e+09	COIL	50	1.308e+09	2.403e+10	5.032e+09	1.2
COIL	100	2.960e+09	2.834e+10	3.222e+10	9.919e+08	8.745e+08	8.510e+08	COIL	100	2.922e+09	2.834e+10	2.086e+10	9.1
COIL	200	3.371e+09	2.834e+10	5.229e+10	8.495e+08	5.959e+08	5.600e+08	COIL	200	3.361e+09	2.834e+10	4.116e+10	7.0
COIL	300	3.996e+09	2.834e+10	1.017e+11	8.493e+08	5.002e+08	4.956e+08	COIL	300	3.920e+09	2.834e+10	7.040e+10	6.2
TDT2	20	1.597e+06	2.211e+06	1.688e+06	1.591e+06	1.595e+06	1.592e+06	TDT2	20	1.595e+06	2.211e+06	1.643e+06	1.5
TDT2	50	1.408e+06	2.211e+06	2.895e+06	1.393e+06	1.390e+06	1.385e+06	TDT2	50	1.394e+06	2.211e+06	1.933e+06	1.3
TDT2	100	1.300e+06	2.211e+06	6.187e+06	1.222e+06	1.224e+06	1.214e+06	TDT2	100	1.229e+06	2.211e+06	5.259e+06	1.2
TDT2	200	1.628e+06	2.211e+06	1.791e+07	1.119e+06	1.227e+06	1.079e+06	TDT2	200	1.389e+06	1.547e+06	1.716e+07	1.0
TDT2	300	1.915e+06	1.854e+06	3.412e+07	1.172e+06	7.902e+06	1.066e+06	TDT2	300	1.949e+06	1.836e+06	3.369e+07	1.0
time limit=30							time limit=50						
20news	20	4.716e+06	2.762e+07	7.471e+06	4.510e+06	4.503e+06	4.500e+06	20news	20	4.565e+06	2.762e+07	6.939e+06	4.4
20news	50	4.569e+06	2.762e+07	5.034e+07	3.628e+06	3.495e+06	3.446e+06	20news	50	4.343e+06	2.762e+07	1.813e+07	3.5
20news	100	6.639e+06	2.762e+07	4.316e+07	3.293e+06	3.223e+06	2.817e+06	20news	100	6.404e+06	2.762e+07	3.955e+07	3.0
20news	200	6.991e+06	2.762e+07	1.015e+08	3.609e+06	7.676e+06	2.507e+06	20news	200	5.939e+06	2.762e+07	9.925e+07	3.1
20news	300	1.354e+07	2.762e+07	1.942e+08	4.519e+06	4.621e+07	3.097e+06	20news	300	9.258e+06	2.762e+07	1.912e+08	3.6
COIL	20	1.992e+09	4.405e+09	2.014e+09	1.974e+09	1.975e+09	1.975e+09	COIL	20	1.982e+09	7.136e+09	2.033e+09	1.9
COIL	50	1.335e+09	2.420e+10	5.772e+09	1.272e+09	1.252e+09	1.250e+09	COIL	50	1.298e+09	2.834e+10	4.365e+09	1.3
COIL	100	2.936e+09	2.834e+10	1.814e+10	9.422e+08	8.623e+08	8.458e+08	COIL	100	1.945e+09	2.834e+10	1.428e+10	9.0
COIL	200	3.362e+09	2.834e+10	4.627e+10	7.614e+08	5.720e+08	5.392e+08	COIL	200	3.362e+09	2.834e+10	3.760e+10	6.7
COIL	300	3.946e+09	2.834e+10	7.417e+10	6.734e+08	4.609e+08	4.544e+08	COIL	300	3.905e+09	2.834e+10	6.741e+10	5.8
TDT2	20	1.595e+06	2.211e+06	1.667e+06	1.591e+06	1.594e+06	1.592e+06	TDT2	20	1.595e+06	2.211e+06	1.622e+06	1.5
TDT2	50	1.397e+06	2.211e+06	2.285e+06	1.393e+06	1.389e+06	1.385e+06	TDT2	50	1.393e+06	2.211e+06	1.875e+06	1.3
TDT2	100	1.241e+06	2.211e+06	5.702e+06	1.216e+06	1.219e+06	1.212e+06	TDT2	100	1.223e+06	2.211e+06	4.831e+06	1.2
TDT2	200	1.484e+06	1.878e+06	1.753e+07	1.063e+06	1.104e+06	1.049e+06	TDT2	200	1.267e+06	2.211e+06	1.671e+07	1.0
TDT2	300	1.879e+06	2.211e+06	3.398e+07	1.060e+06	1.669e+06	1.007e+06	TDT2	300	1.903e+06	2.211e+06	3.328e+07	9.7

nd 3^{rd} best results are colored with red, blue and green, respectivel

Matrix Splitting Method -Matrix Splitting Method 100 150 200

Classical PGM (line search)

Accerlated PGM (constant

Classical PGM (constant)

Classical PGM (line search Accerlated PGM (constant

Accerlated PGM (line searc