A Clever Elimination Strategy for Efficient Minimal Solvers

Zuzanna Kukelova ${ }^{1}$, Joe Kileel ${ }^{2}$, Bernd Sturmfels ${ }^{2}$, Tomas Pajdla ${ }^{1}$

Motivation

New strategy for solving minimal problems

- Do more computation in an off-line stage and less in an on-line stage
- Many minimal problems in computer vision lead to coupled sets of lin
equations ondyial equations where image measurements enter the linear
equations only
Eliminate all unknowns which do not appear in the linear equa tions - do this only once in the pre-processing step (offline)
. Extend solutions to the other unknowns
- Can be generalized to fully non-linear systems by monomial lifting
.

Basic algebraic geometry
Consider a system of m polynomial equations in n unknowns $X=\left\{x_{1}, \ldots, x_{n}\right\}$

$$
F=\left\{f_{1}\left(x_{1}, \ldots, x_{n}\right)=0, \ldots, f_{m}\left(x_{1}, \ldots, x_{n}\right)=0\right\}
$$

Assume that the set $F=\left\{f_{1}, \ldots, f_{m}\right\}$ generates a zero dimensional ideal

$$
I=\left\{\sum_{i=1}^{m} g_{i} f_{i}, \mid g_{1}, \ldots, g_{m} \in \mathbb{C}[X]\right\} \subset \mathbb{C}[X],
$$

Gröbner basis G in Lex order -a
tains polynomial in one variable
Elimination theory - classical algrithmic appre Elimination theory - Classical algorithmic apprial
ables between polynomials of several variables
The $j^{\text {th }}$ elimination ideal of I is $I_{j}=I \cap \mathbb{C}\left[x_{j+1}, x_{n}\right]$-we eliminate the firs j variables to obtain I_{j}
Theorem: Let G be a Gröbner basis for I in the lex order
$\mathbb{C}\left[x_{j+1}, \ldots, x_{n}\right]$ is a Gröbner basis for the $j^{t} h$ elimination ideal I_{j}
Example: Let $I=\left\langle x^{3}+x y+1, x^{2} y^{2}, y^{4}\right\rangle$. Its Gröbner basis in the lex order is
Example: Let $I=\left\langle x^{3}+x y+1, x^{2} y^{2}\right.$
$y^{2}, x^{3}+x y+1$. Therefore $I_{x}=\left\langle y^{2}\right\rangle$
Standard elimination strategy
Partitioned F into two subsets:

$$
\begin{aligned}
& F_{L}=\left\{f_{i} \in F \mid \operatorname{deg}\left(f_{i}\right)=1\right\}, \\
& F_{N}=\left\{f_{i} \in F \mid \operatorname{deg}\left(f_{i}\right)>1\right\} .
\end{aligned}
$$

F_{L} - linear polynomials from F
F_{N} - polynomials of higher degrees SOTA

Rewrite the linear equations F_{L} in the unknowns X_{L} as $\mathrm{M} X_{L}=0$, where M is a coefficient matrix.
2. Compute a null space basis N of M , re-parametrize the unknowns $X_{L}=\mathrm{N} Y$ 3. Substitute $X_{L}=\mathrm{N} Y$ into the non-linear equations
4. Solve the system $F_{N}\left(Y \cup\left(X \backslash X_{L}\right)\right)=0$ (e.g. by the au
4. Solve the system $F_{N}\left(Y \cup\left(X \backslash X_{L}\right)\right)=0$ (e.g. by the automatic generator [5]).

[^0]+E+i reiative pose probiem - NEW SOLVER
After eliminating the unknown focal length f from (10) and (11) we get
one qubic
$\operatorname{det}(\mathbf{F})$
(12)
and the quintic
$f_{11} f_{13}^{3} f_{31}+f_{13}^{2} f_{21} f_{23} f_{31}+f_{11} f_{13} f_{23}^{2} f_{31}+f_{21} f_{23}^{3} f_{31}-f_{11} f_{13} f_{31}^{3}$
$-f_{21} f_{23} f_{31}^{3}+f_{12} f_{13}^{3} f_{32}+f_{13}^{2} f_{22} f_{23} f_{32}+f_{12} f_{13} f_{23}^{2} f_{32}+f_{22} f_{23}^{3} f_{32}$ $-f_{12} f_{13} f_{31}^{2} f_{32}-f_{12}^{2} f_{13}^{2} f_{33}-f_{11} f_{13} f_{31} f_{32}^{2}-f_{21} f_{23} f_{31} f_{32}^{2}-f_{12} f_{13} f_{32}^{3}$ $-f_{22} f_{23} f_{32}^{3}-f_{11}^{2} f_{13}^{2} f_{33}-f_{22} f_{23} f_{31}^{2} f_{32}-2 f_{11} f_{13} f_{21} f_{23} f_{33}-2 f_{12} f_{13} f_{22} f_{23} f_{33}$ $-f_{21}^{2} f_{23}^{2} f_{33}-f_{22}^{2} f_{23}^{2} f_{33}+f_{11}^{2} f_{31}^{2} f_{33}+f_{21}^{2} f_{31}^{2} f_{33}+2 f_{11} f_{12} f_{31} f_{32} f_{33}+$ $2 f_{21} f_{22} f_{31} f_{32} f_{33}+f_{12}^{2} f_{32}^{2} f_{33}+f_{22}^{2} f_{32}^{2} f_{33}$
in two unknowns x and y
Result: The zero set of (12) and (13) equals the space of all fundam
F that can be decomposed into $\mathrm{F}=\mathrm{K}^{-1} \mathrm{EK}$
(13) (12)

The generators (12) and (13) of the elimination ideal $I_{f}=I \cap$
$\mathbb{C}\left[f_{11}, f_{12}, f_{13}, f_{21}, f_{22}, f_{23}, f_{31}, f_{33}, f_{33}\right]$, i.e. the elements that do not contain the C $f_{11}, f_{12}, f_{13}, f_{21}, f_{22}, f_{23}, f_{31}, f_{32}, f_{33}$, , i.e. the elements that do not contain the
ocal length f, can be computed offline using the following Macaulay [3] code: $R=Q Q[\ddagger, £ 11, £ 12, £ 13, £ 21, £ 22, £ 23, £ 31, £ 32, £ 33] ;$ $\mathrm{F}=\operatorname{matrix}\{\{£ 11, £ 12, \mp 13\},\{£ 21, £ 22, £ 23\},\{£ 31, £ 32, £ 33\}\}$ $\mathrm{K}=\operatorname{matrixixf}\{\mathrm{f}, 0,0\},\{0, \mathrm{f}, 0\},\{0,0,1\}\}$
$\mathrm{E}=\mathrm{K} \times \mathrm{F} \times \mathrm{K} ;$
$\begin{aligned} I= & \operatorname{minors}(1,2 \times E \times \operatorname{transpose}(\mathbb{E}) \star E \\ & -\operatorname{trace}(\mathbb{E} * \operatorname{transpose}(\mathbb{E})) * E)+i d\end{aligned}$
$G=$ eliminate (f, saturate (I,
dim G, degree G, mingens G

Sparsity patterns for the solvers to the f+F+f problem: (a)
Kukelova08 $[5]$ solver (b) the new $21 \times 36 \mathrm{EL}$-fEf solver.

New solvers

E+f relative pose problem

- Relative pose of one calibrated and one up to focal length calibrated cam-

Relative pose of one calibrated and
era from 6 point correspondences

- Similar constraints to $\mathrm{f}+\mathrm{E}+\mathrm{f}$ problem - $\mathrm{E}=\mathrm{FK} ; \mathrm{K}=\operatorname{diag}(f, f, 1)$
- SOTA solver [2] - ten $3^{\text {rd }}$ and $4^{\text {th }}$ order polynomial equations in three un-
knowns, G-J elimination of a 21×30 matrix
- After eliminating the unknown focal length f from (10) and (11) we get
- The new EI-Ef solver performs G-J elimination of a 6×15 matrix

$\mathrm{E}+\mathrm{f}$ relative problem

E+f+k relative pose problem

E $+\mathrm{f}+\mathrm{k}$ relative pose problem
Recalive ponge and unk calibrated camera and one camera with unknown - One-parameter division model for distortion

$$
\mathbf{x}_{u_{i}}(\lambda)=\left[x_{d_{i}}, y_{d_{i}}, 1+\lambda\left(x_{d_{i}}^{2}+y_{d_{i}}^{2}\right)\right]^{\top}
$$

- Epipolar co
equations
SOTA solver [4]- creful manal large solver \rightarrow G- elimination of a 200×231 matrix
- The new solver - first linearize the equations from the epipolar constraint via monomial lifting
- Then eliminate the focal length f and the radial distortion parameter λ
- New generators - two cubics and nine quartics in four unknowns
$\mathbf{F}+\beta$ relative pose of unsynchronized cameras
- Simultaneously estimation of camera geometry and time shift β for unsyn-
- Original system of 7 non-linear equations in 7 unknowns - 633×649
- After eliminating β - 18 equations in 6 unknowns -194×210 solver - For more details see Poster 2003 [1] - (Tuesday, July 25, 10am)

Summary

	$\mathrm{f}+\mathrm{F}+\mathrm{f}$	$\mathrm{E}+\mathrm{f}$	$\mathrm{E}+\mathrm{f}+\mathrm{k}$	$\mathrm{F}+\beta$
SOTA	$31 \times 46[5]$	$21 \times 30[2]$	$200 \times 231[4]$	$633 \times 649[5]$
EI (new)	21×36	6×15	51×70	194×210

[^0]: $\mathrm{f}+\mathrm{E}+\mathrm{f}$ relative pose problem
 Problem of estimating relative pose and the common unknown focal length of
 two cameras from six image two cameras from sis
 Epipolar constraints

 $$
 \mathbf{x}_{i}^{\top} \mathrm{Fx}_{i}^{\prime}=0
 $$

 for six image point corres
 Rewrite in a matrix form

 ## $M f=0$,

 where M is a 6×9 coefficient matrix and f is a vector of 9 elements of F.For six image correspondences F can be parametrized by two unknowns as

 $$
 \mathrm{F}=x \mathrm{~F}_{1}+y \mathrm{~F}_{2}+\mathrm{F}_{3},
 $$

 where $\mathrm{F}_{1}, \mathrm{~F}_{2}, \mathrm{~F}_{3}$ are matrices from the three-dimensional null space of M and and y are new unknowns.
 and y are new unkno
 The rank constraint
 $\operatorname{det}(\mathbf{F})=0$
 The trace constrain
 where $\mathrm{Q}=\mathrm{KK}=\operatorname{diag}\left(f^{2}, f^{2}, 1\right)$.
 All SOTA solvers solve these ten third- and fifth-order polynomial equaAIions (10) and (11) in three unknowns x, y and $w=1 / f^{2}$
 thenther

