

Consensus Maximization with Linear Matrix Inequality Constraints

Pablo Speciale¹, Danda P. Paudel², Martin R. Oswald¹,
Till Kroeger², Luc V. Gool², and Marc Pollefeys¹.

¹ Department of Computer Science, ETH Zürich

² Computer Vision Laboratory, D-ITET, ETH Zürich

Code: <http://cvg.ethz.ch/research/conmax/>

Motivation

Consensus maximization has proven to be a useful tool for robust estimation. In this paper, we show the solution space can be reduced by introducing Linear Matrix Inequality (LMI) constraints. This leads to significant speed ups of the optimization time even for large amounts of outliers, while maintaining global optimality.

Contributions

- General LMI constraints can be used in a variety of geometric problems. We show derivations for rigid-body, rigid-body + scale, restricted rotations, essential matrix.
- LMI constraints used within Branch-and-Bound (BnB) paradigm to optimally solve the **consensus maximization**.
- LMI constraints speeds up the search process.

Notation

$$A \succeq 0$$

A is positive semi-definite

A **spectrahedron** is the intersection of positive semi-definite matrices with an affine-linear space.

$$\mathcal{S} = \{y \in \mathbb{R}^n : A(y) \succeq 0\}$$

$$A(y) = A_0 + \sum_i^n y_i A_i$$

Spectrahedron

$$Ax > 0$$

A **Polyhedron**

$$A(x) \succeq 0$$

LMI (Linear Matrix Inequality)

$$A(y) \succeq 0$$

Problem Formulation

Consensus Maximization

Given a set of measurement pairs $\mathcal{Z} = \{\mathcal{P}_i\}_{i=1}^n$ and a threshold ϵ ,

$$\begin{aligned} & \text{maximize}_{x, \zeta \subseteq \mathcal{Z}} |\zeta|, \\ & \text{subject to } \gamma_i(x) \leq \epsilon, \quad \forall \mathcal{P}_i \in \zeta, \\ & \quad A(x) \succeq 0. \end{aligned}$$

Consider a geometric transformation $T(x) : U \rightarrow V$ that relates a pair of measurements $\mathcal{P} = \{U, V\}$. Let $\gamma(x)$ be the residual error for a known \mathcal{P} and the estimate x .

$$\begin{aligned} U & \xrightarrow{T(x)} V \\ v_i &= S(x) u_i + t(x) \\ & \text{(Similarity Transformation)} \\ \gamma_i(x) &= [S(x) u_i + t(x) - v_i]^T \Sigma^{-1} [S(x) u_i + t(x) - v_i] \\ &= x^T Q_i x + q_i^T x + r_i \text{ with } Q_i \succeq 0. \end{aligned}$$

Mixed Integer Programming

The consensus maximization problem can be restated as Mixed Integer Semi-Definite Programming (MI-SDP), allowing for global optimization:

$$\begin{aligned} & \text{minimize}_{x, z} \sum_i z_i, \\ & \text{subject to } \gamma_i(x) \leq \epsilon + z_i M, \quad \forall i, \\ & \quad z_i \in \{0, 1\}, \\ & \quad A(x) \succeq 0. \end{aligned}$$

Residual bounds
Binary variables
LMI

Theory

Definition (Orbitope [1]) An orbitope is the convex hull of an orbit of a compact algebraic group that acts linearly on a real vector space. The orbit has the structure of a real algebraic variety, and the orbitope is a convex semi-algebraic set.

A 3-dimensional rotation matrix $R \in SO(3)$ has dimension three. However, its tautological orbitope is a convex body of dimension nine. The following theorem is a key ingredient of this work.

Theorem (SO(3) Orbitope [1]) The tautological orbitope $\text{conv}(SO(3))$ is a spectrahedron whose boundary is a quartic hypersurface. A 3×3 matrix A lies in $\text{conv}(SO(3))$ if and only if,

$$I_{4 \times 4} + \mathcal{L}(A) \succeq 0$$

Proposition (SSO(3) and SO(3) Orbitope) $\forall S \in SSO(3)$ there exists $A \in \text{conv}(SO(3))$ such that $S = \alpha A$, if and only if $\exists \alpha > 0$:

$$\alpha I_{4 \times 4} + \mathcal{L}(S) \succeq 0$$

where,

$$\mathcal{L}(A) = \begin{bmatrix} a_{11} + a_{22} + a_{33} & a_{32} - a_{23} & a_{13} - a_{31} & a_{21} - a_{12} \\ a_{32} - a_{23} & a_{11} - a_{22} - a_{33} & a_{21} + a_{12} & a_{13} + a_{31} \\ a_{13} - a_{31} & a_{21} + a_{12} & a_{22} - a_{11} - a_{33} & a_{32} + a_{23} \\ a_{21} - a_{12} & a_{13} + a_{31} & a_{32} + a_{23} & a_{33} - a_{11} - a_{22} \end{bmatrix}$$

References

[1] R. Sanyal, F. Sottile, and B. Sturmfels. Orbitopes. *Mathematika*, 57(02):275–314, 2011.

Generalization

Transformation:

$$\beta_i(x) v_i = B_i(x) u_i + b(x)$$

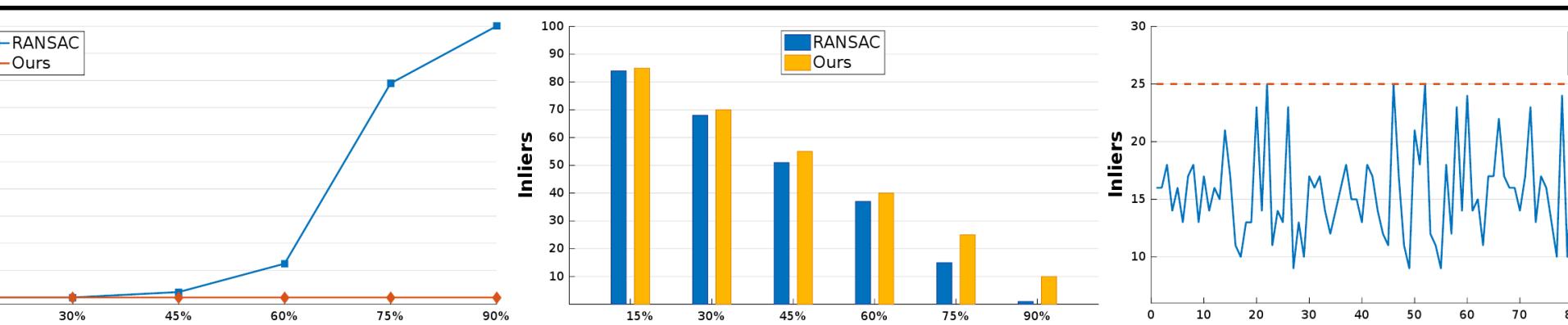
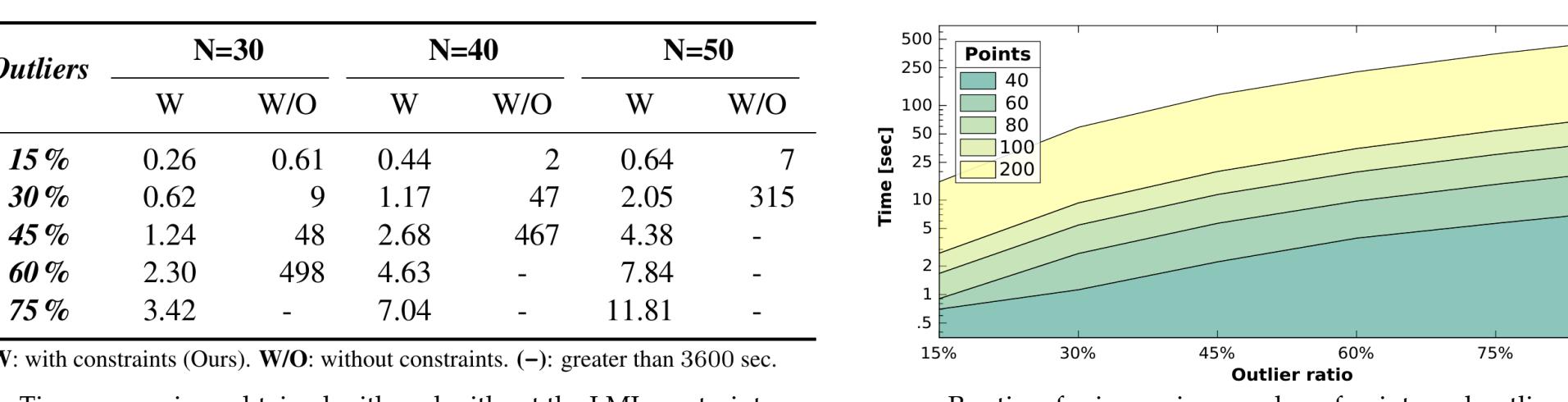
New Residual:

$$\begin{aligned} \gamma_i(x) &= \Delta_i(x)^T \Sigma^{-1} \Delta_i(x), \\ \Delta_i(x) &= B_i(x) u_i + b(x) - \beta_i(x) v_i \end{aligned}$$

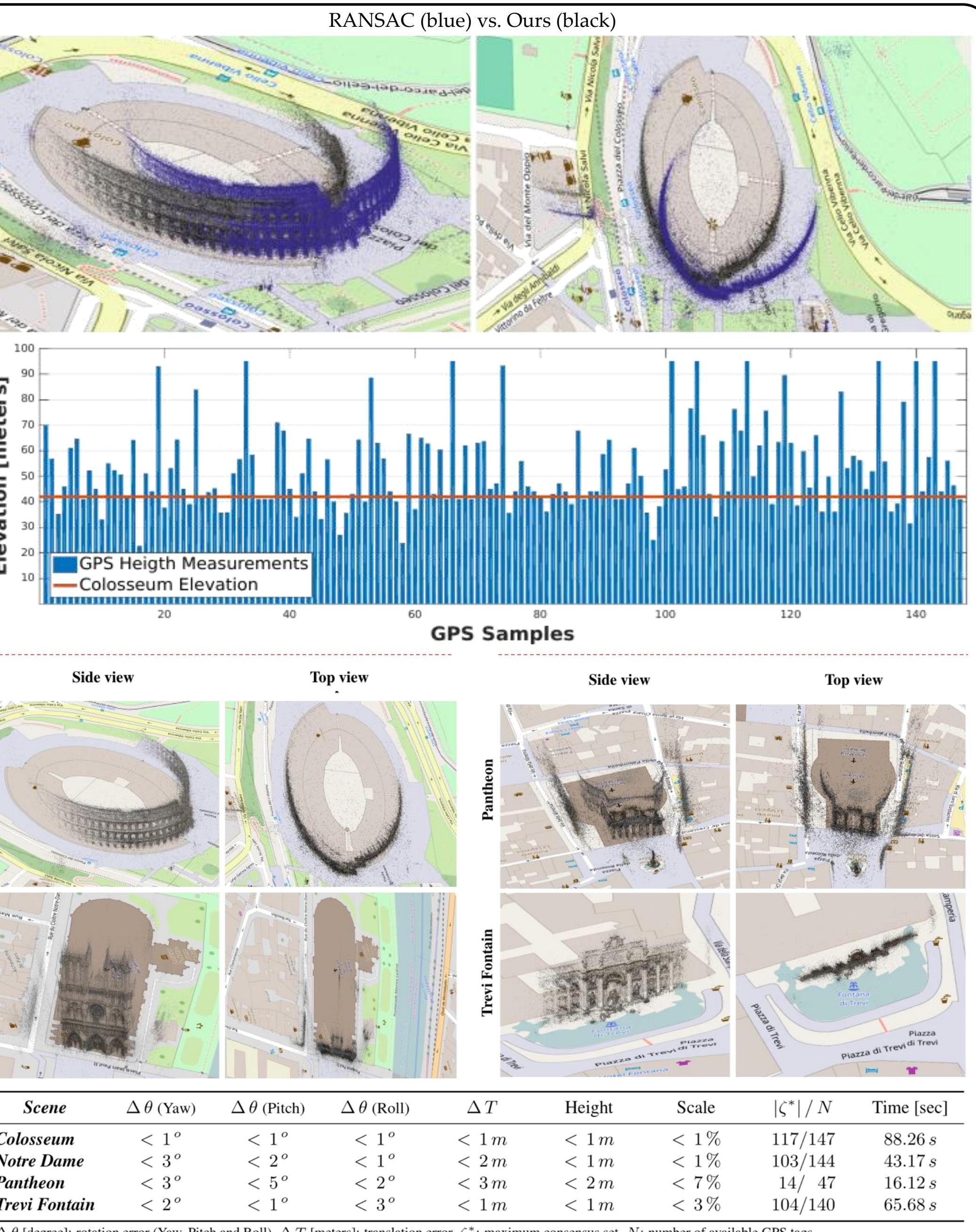
Transformations

Transformations	Constraints	$\beta_i(x)$	$B_i(x)$	$b(x)$	LMIs
Similarity	$S(x) \in SSO(3)$	1	$S(x)$	$t(x)$	$\mathcal{K}_s \succeq 0$
Absolute Pose	$R(x) \in SO(3)$	$r_3(x)^T u_i + t_3(x)$	$R(x)$	$t(x)$	$\mathcal{K}_a \succeq 0$
Relative Pose	$E(x) \in \mathcal{E}$	$[(n_i)_1 e_2(x) - (n_i)_2 e_1(x)]^T u_i$	$[n_i] \times E(x)$	0	$\mathcal{K}_r \succeq 0$

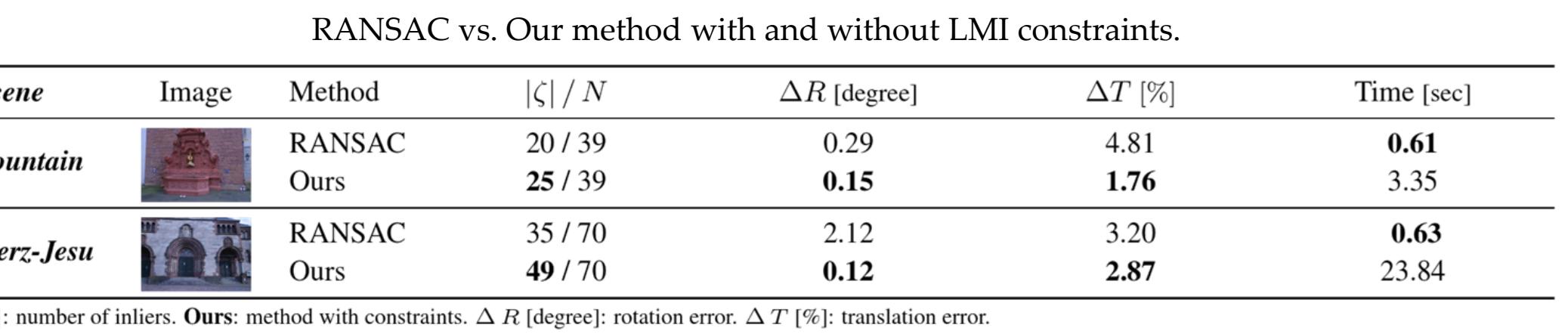
Results - Similarity Transformation (Synthetic Data)



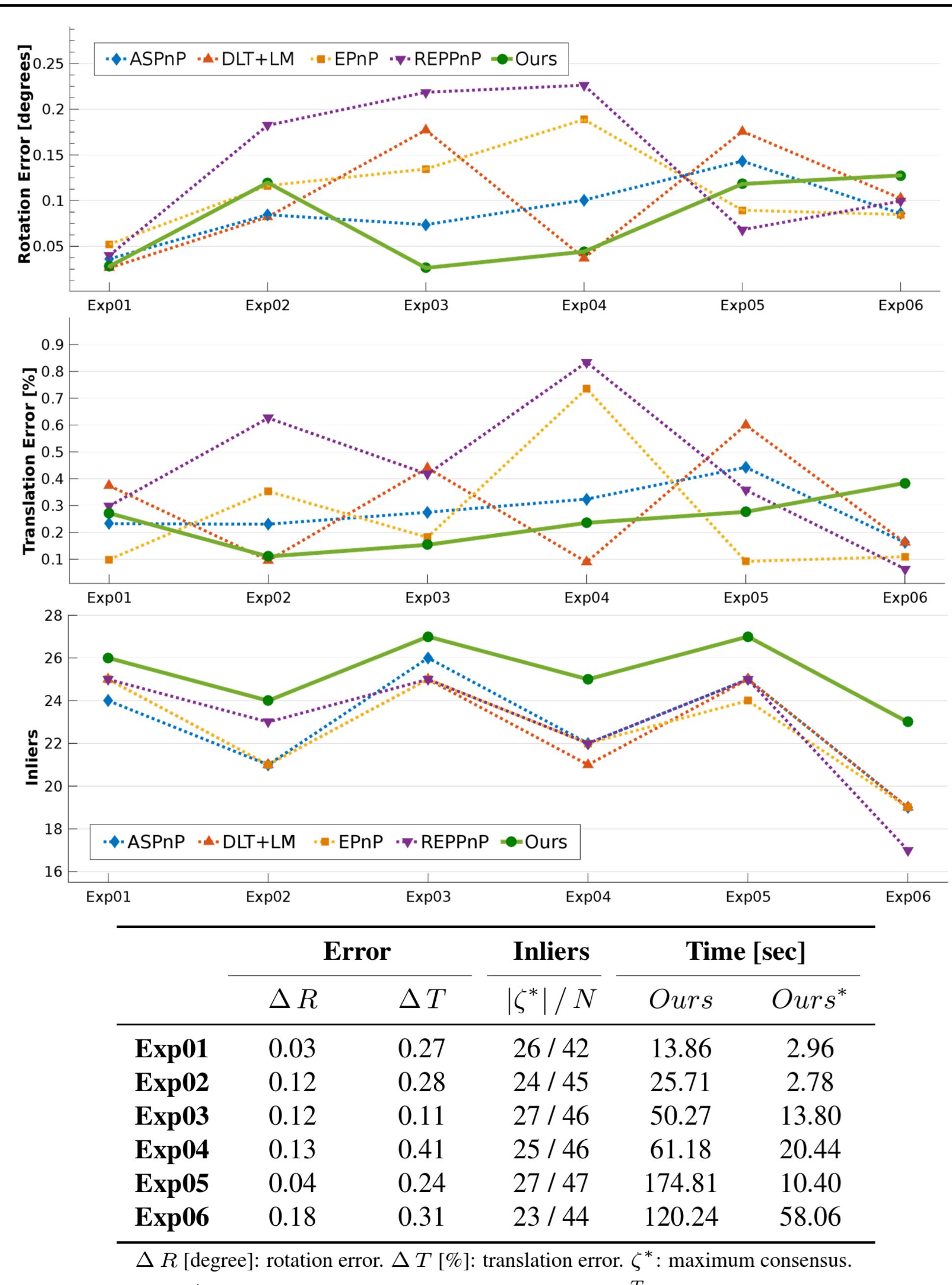
Results - Similarity Transformation (Real Data)



Results - Relative Pose (Real Data)



Results - Absolute Pose (Real Data)



Conclusions

- We present a general **global optimization framework** for consensus maximization with LMI constraints.
- Proposed LMI constraints offer a significant **speedup** in computation time, under a globally optimal framework, by reducing the solution search space.
- Experiments on problems of **similarity transformation**, **absolute pose**, and **relative pose** estimation were successfully conducted.