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4 Definition (Orbitope [1]) An orbitope is the convex hull of an orbit of a compact algebraic )
Consensus maximization has proven to be a useful tool for robust estimation. In this group that acts linearly on a real vector space. The orbit has the structure of a real algebraic
paper, we show the solution space can be reduced by introducing Linear Matrix variety, and the orbitope is a convex semi-algebraic set.
Inequality (LMI) constraints. This leads to significant speed ups of the optimization A 3-dimensional rotation matrix R € SO(3) has dimension three. However, its tautological
time even for large amounts of outliers, while maintaining global optimality. orbitope is a convex body of dimension nine. The following theorem is a key ingredient of this
. ) work.
buti Theorem (SO(3) Orbitope [1]) The tautological orbitope conv(SO(3)) is a spectrahedron whose
Contributions boundary is a quartic hypersurface. A 3 X 3 matrix A lies in conv(50(3)) if and only if,
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* General LMI constraints can be used in a variety of geometric problems. We show lixa + L(A) =0 ExpO1 EXp02 Exp03 Exp04 ExpO5 EXp06
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derivations for rigid-body, rigid-body + scale, restricted rotations, essential matrix. Proposition (SSO(3) and SO(3) Orbitope) v S € SSO(3) there exists A € conv(SO(3)) such that S
* LMI constraints used within Branch-and-Bound (BnB) paradigm to optimally solve =a A, if and only if 3 a> 0: %]
the consensus maximization. alysca + L£(S) = 0 g a0 |
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* LMI constraints speeds up the search process. where, e .
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A spectrahedron is the intersection of positive I A - J GPS Samples
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Similarity S(x) € SSO(3) 1 S(x) t(x) Ks>=0 o 3 2 By By
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Consensus Maximization Consider a geometric transformation T'(x) : U — V" that | ¥ (o) (n)2e1 () nd ) |E0 i £ Exp0l  0.03 027  26/42  13.86 2.96
relates a pair of measurements P = {U,V'}. Let y(x) be Z oy _ J L
Given a set of measurement pairs Z — {P;}" the residual error for a known P and the estimate x. .Y Exp02 0.12 0.28 241745 25.71 2.78
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Mixed Integer Programming RANSAC (blue) vs Onrs Results — Relative Pose (Real Data) Conclusions
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. . ] 45 % 1.24 48  2.68 467 4.38 - Tosp Ours 25/ 39 0.15 1.76 3.35 . . s . . .
subjectto  v;(x) < e+ z; M, Vi, === Residual bounds 60 % 530 198 463 ) 784 ] N « Experiments on problems of similarity transformation, absolute pose, and relative pose
: : ' ‘ ‘ LE : : RANSAC 35/70 2.12 3.20 0.63 timation were successfully conducted
z; €10,1 === Binary variables 75% 342 - 7.04 - 11.81 - s | | . . | Herz-Jesu es W :
‘ { ’ }’ y W: with constraints (Ours). W/O: without constraints. (-): greater than 3600 sec 15% 30% 45% 60% 5% 90% Ours 9770 0.12 2.87 2384 \ S
A(X) ~— 0 2 LMI . . - e . Outlier ratio |¢|: number of inliers. Ours: method with constraints. A R [degree]: rotation error. A T [%]: translation error.
L - y L Time comparison obtained with and without the LMI constraint. Runtime for increasing number of points and outlier ratio. ) N IEEE Conference on Computer Vision and Pattern Recognition (CVPR) , HOHOIUIU, Hawaii, ]llly 2017




