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Examples: Lines and planes are pervasive in Computer Vision

PnP problem Extrinsic calibration
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Goal: Find globally optimal pose, fast
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Rich models

« Alternatives are either slow (BnB [1]) or suboptimal (SDP [2])

Equivalent formulation: Quadrati

Generalized distance: dp(x)? = |z — y||&

Marginalization of translation: t € R*

Linear transformation: T @ x; = X ; vec(T) =>

C objective

Quadratic
objective:
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R € S0(3) & {c;(r) = 0}

Rotation constraint:

How to solve this non-convex problem globally?

Non-convert

Convex relaxation via Lagrangian duality

(fp) Primal problem: QCQP (R) Lagrangian relaxation
Equivalent to original problem Subs. constraints by penalizations
Non-convex optimization
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If d = f*holds A Convex optimization
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Main contribution: Exploit redundant rotation constraints

Usual constr. All quadratic constr.: Each color a constraint

R'R=1I, Ort. Columns ~ Ort. Rows Right hand
[det( R) = +1] R'R =15 (x6) RR" =I5 (x6) cixc;j=cy (x9)
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Not quadratic!
Constr. in [2]

Our constraints (x21)

Empirical  1f all (x21) constraints were added in (D),
observation: there was always strong duality (d* = 7).
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We evaluate how often a method attains the globally optimal solution:
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Conclusion

Empirically, we show the non-convexity of the constraint R € SO(3)
can be circumvented when solving the studied registration problem.

Ongoing work: Theoretical guarantees Faster SDP solver
Optimality verification Multiple global minima Robust registration
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