

Deep Hashing Network for Unsupervised Domain Adaptation Hemanth Venkateswara, Jose Eusebio, jeusebio@asu.edu hemanthv@asu.edu

Outline

Source $\mathcal{D}_s = \{ oldsymbol{x}_i^s, y_i^s \}_{i=1}^{n_s}$ Target $\mathcal{D}_t = \{ oldsymbol{x}_i \}_{i=1}^{n_s}$ In the absence of labeled data, domain adaptation algorithms leverage labeled data from a source domain Supervised Hash Loss to train a classifier for a target domain. We present a Similarity $\mathcal{S} = \{s_{ij}\}^{n_s \times n_s}, s_{ij} \in \{0, 1\}$ Hash vec Domain Adaptive Hashing (DAH) network that exploits labeled source data and unlabeled target data to learn $p(s_{ij}|\boldsymbol{h}_i, \boldsymbol{h}_j) = \begin{cases} \sigma(\boldsymbol{h}_i^{\top} \boldsymbol{h}_j), & s_{ij} = 1\\ 1 - \sigma(\boldsymbol{h}_i^{\top} \boldsymbol{h}_j), & s_{ij} = 0, \end{cases}$ hash codes to classify the target data. The objectives of the DAH are: $\min_{\mathbf{H}} \mathcal{L}(\mathbf{H}) = -\log p(\mathcal{S}|\mathbf{H}) \qquad \text{Relaxing} \quad \boldsymbol{h}_i$ ✓ Supervised hash loss for source. Samples from same class have similar hash codes ('category $\min_{\mathcal{U}_s} \mathcal{L}(\mathcal{U}_s) = -\sum_{s_{ij} \in \mathcal{S}} \Big(s_{ij} \boldsymbol{u}_i^\top \boldsymbol{u}_j - \log \big(1 + \exp(\boldsymbol{u}_i^\top \boldsymbol{u}_j) \big) \Big)$ sensitive' hashing). ✓ Unsupervised entropy loss for unlabeled target. A target hash code aligns with only one source Maximum Mean Discrepancy Loss category. Fully connected layer outputs: $\mathcal{U}_s^l = \{ \boldsymbol{u}_i^{s,l} \}_{i=1}^{n_s}$ and ✓ Maximum Mean Discrepancy loss which aligns $\mathcal{M}(\mathcal{U}_s, \mathcal{U}_t) = \sum_{l \in \mathcal{T}} \left| \left| \mathbb{E}[\phi(\boldsymbol{u}^{s,l})] - \mathbb{E} \right| \right|$ the source and target distributions. Unsupervised Entropy Loss Motivation Given target output \boldsymbol{u}_{i}^{t} , K source outputs $\{\boldsymbol{u}_{k}^{s_{j}}\}$ > To measure average similarity of unlabeled data with $p_{ij} = \frac{\sum_{k=1}^{K} \exp(\boldsymbol{u}_i^{t^{\top}} \boldsymbol{u}_k^{s_j})}{\sum_{l=1}^{C} \sum_{k=1}^{K} \exp(\boldsymbol{u}_i^{t^{\top}} \boldsymbol{u}_k^{s_l})}$ K-Nearest Neighbors from each category probability of assigning u_i^t to class jUnlabeled Data $\mathcal{H}(\mathcal{U}_s, \mathcal{U}_t) = -\frac{1}{n_t} \sum_{i=1}^{n_t} \sum_{j=1}^{C} p_{ij} \log(p_{ij})$ From (1), (2) and (3) $\min_{\mathcal{U}} \mathcal{J} = \mathcal{L}(\mathcal{U}_s) + \gamma \mathcal{M}(\mathcal{U}_s, \mathcal{U}_t) + \eta \mathcal{H}(\mathcal{U}_s, \mathcal{U}_t)$ Category 3 Category 1 Category 2 Similarity comparison with K-Nearest Neighbors **Introducing Office-Home Dataset** > But, neighbor search is brute force in \mathbb{R}^d for large d > Category based hashing reduces search space with https://hemanthdv.github.io/officehome-dataset/ 'category sensitive' property 6 \succ Hamming distance for hash values h_i and h_j where $h_i, h_j \in \{-1, +1\}^d$ is: \succ Therefore, similarity between h_i and h_j is : Dataset consists of images of everyday objects organized into 4 domains; Art: paintings, sketches and/or artistic

$$\operatorname{dist}_H(\boldsymbol{h}_i, \boldsymbol{h}_j) = \frac{1}{2}(d - \boldsymbol{h}_i^{\top} \boldsymbol{h}_j)$$

$$\langle oldsymbol{h}_i,oldsymbol{h}_j
angle$$

> Apply similarity definition to train a deep hashing network

IEEE Computer Vision and Pattern Recognition, Honolulu, 2017

Domain Adaptive Hashing (DAH)

Acknowledgements: Center for Cognitive Ubiquitous Computing (CUbiC) at ASU and the National Science Foundation (NSF)

Shayok Chakraborty, Sethuraman Panchanathan

Shayok.Chakraborty@asu.edu

$$\boldsymbol{x}_i^t\}_{i=1}^{n_t} \quad y_i^* \in Y \coloneqq \{1, \dots, C\}$$

ctors
$$\mathbf{H} = \{ \boldsymbol{h}_i \}_{i=1}^{n_s}, \quad \boldsymbol{h}_i \in \{-1, +1\}^d$$

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$\implies \boldsymbol{u}_i \in \mathbb{R}^d, \quad \mathcal{U}_s = \{\boldsymbol{u}_i\}_{i=1}^{n_s}$$
$$\stackrel{\top}{=} \mathbf{u}_i))) + \sum_{i=1}^{n_s} ||\boldsymbol{u}_i - \operatorname{sgn}(\boldsymbol{u}_i)||_2^2. \quad (1)$$

$$\mathcal{U}_t^l = \{ \boldsymbol{u}_i^{t,l} \}_{i=1}^{n_t}$$
$$\mathbb{E}[\phi(\boldsymbol{u}^{t,l})] \Big| \Big|_{\mathcal{H}_k}^2$$

$$_{k=1}^{K}$$
 of class j

depictions, Clipart: clipart images, Product: images without background and Real-World: regular images captured with a camera. Figure displays examples from 16 of the 65 categories. Dataset has around 15000 images.

DANN

DAH-e

DAH

30.

29.

29.

(2)

(3)

[GFK] Gong et al., "Geodesic Flow Kernel for Unsupervised Domain Adaptation," CVPR, 2012 [TCA] Pan et al., "Domain Adaptation via Transfer Component Analysis," IEEETrans. NN, 2011 [CORAL] Sun et al., Frustratingly Easy Domain Adaptation," ICCV-TASKCV Workshop, 2015 [JDA] Long et al., "Transfer Feature Learning with Joint Distribution Adaptation," ICCV, 2013 [DAN] Long et al., "Learning Transferrable Ftrs. with Deep Adaptation Ntwrks.," ICML, 2015 [DANN] Ganin et al., "Domain Adversarial Training of Neural Networks," JMLR, 2016

panch@asu.edu

DAH Network

Supervised Hash Loss for Source Data Maximum Mean Discrepancy (MMD) Loss Unsupervised Entropy Loss for Target Data

Figure: The Domain Adaptive Hash (DAH) network based on fine-tuning VGG-F (AlexNet) network. The MultiKernel-MMD loss aligns source and target feature distributions. The *hash-fc*8 layer outputs hash vectors in d dimensions. The supervised hash loss estimates unique hash values for each category. The unsupervised entropy loss aligns a target hash value

Experiments

Table: Recognition accuracies (%) for domain adaptation experiments on the Office-Home dataset. {Art (Ar), Clipart (Cl), Product (Pr), Real-World (Rw). Ar->Cl implies Ar is source and Cl is target. d=64.

→Cl	Ar → Pr	Ar→ R w	Cl→Ar	Cl→Pr	Cl→Rw
.60	31.72	38.83	21.63	34.94	34.20
.93	32.08	35.71	19.00	31.36	31.74
.10	36.16	44.32	26.08	40.03	40.33
.34	35.98	42.94	24.52	40.19	40.90
.66	42.17	54.13	32.83	47.59	49.78
.33	42.96	54.42	32.26	49.13	49.76
.23	35.71	48.29	33.79	48.23	47.49
.64	40.75	51.73	34.69	51.93	52.79
Ar	Pr→Cl	Pr → Rw	R w→Ar	$\mathbf{Rw} \rightarrow \mathbf{Cl}$	Rw → Pr
• Ar 52	Pr→Cl 25.73	Pr→Rw 42.92	Rw → Ar 32.88	Rw → Cl 28.96	Rw → Pr 50.89
Ar 52 92	Pr→Cl 25.73 23.64	Pr→Rw 42.92 42.12	Rw → Ar 32.88 30.74	Rw→Cl 28.96 27.15	Rw → Pr 50.89 48.68
Ar 52 92 77	Pr→Cl 25.73 23.64 30.54	Pr→Rw 42.92 42.12 50.61	Rw → Ar 32.88 30.74 38.48	Rw→Cl 28.96 27.15 36.36	Rw → Pr 50.89 48.68 57.11
Ar 52 92 77 96	Pr→Cl 25.73 23.64 30.54 32.72	Pr→Rw 42.92 42.12 50.61 49.25	Rw → Ar 32.88 30.74 38.48 35.10	Rw→Cl 28.96 27.15 36.36 35.35	Rw → Pr 50.89 48.68 57.11 55.35
Ar 52 92 77 96 07	Pr→Cl 25.73 23.64 30.54 32.72 34.05	Pr→Rw 42.92 42.12 50.61 49.25 56.70	Rw → Ar 32.88 30.74 38.48 35.10 43.58	Rw→Cl 28.96 27.15 36.36 35.35 38.25	Rw → Pr 50.89 48.68 57.11 55.35 62.73
Ar 52 92 77 96 07 49	Pr→Cl 25.73 23.64 30.54 32.72 34.05 38.14	Pr→Rw 42.92 42.12 50.61 49.25 56.70 56.76	Rw → Ar 32.88 30.74 38.48 35.10 43.58 44.71	Rw→Cl 28.96 27.15 36.36 35.35 38.25 42.66	Rw → Pr 50.89 48.68 57.11 55.35 62.73 64.65
Ar 52 92 77 96 07 49 87	Pr→ $Cl25.7323.6430.5432.7234.0538.1438.76$	Pr → Rw 42.92 42.12 50.61 49.25 56.70 56.76 55.63	Rw → Ar 32.88 30.74 38.48 35.10 43.58 44.71 41.16	Rw→Cl 28.96 27.15 36.36 35.35 38.25 42.66 44.99	Rw → Pr 50.89 48.68 57.11 55.35 62.73 64.65 59.07
Ar 52 92 77 96 07 49 87 91	Pr → Cl 25.73 23.64 30.54 32.72 34.05 38.14 38.76 39.63	Pr → Rw 42.92 42.12 50.61 49.25 56.70 56.70 56.76 55.63 60.71	Rw→ $Ar32.8830.7438.4835.1043.5844.7141.1644.99$	Rw→ $Cl28.9627.1536.3635.3538.2542.6644.9945.13$	Rw → Pr 50.89 48.68 57.11 55.35 62.73 64.65 59.07 62.54

References