
real-valued bias

Nonlinearities: apply to modulus only
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1) What is equivariance and why you should use it
Our solution

4) Details

University College London
Harmonic Networks: Deep Rotation and Translation Equivariance
Daniel E. Worrall, Stephan J. Garbin, Daniyar Turmukhambetov, Gabriel J. Brostow
http://visual.cs.ucl.ac.uk/pubs/harmonicNets/index.html

2) Our solution: Harmonic Networks

3) Results

• Translational weight-tying
• Fewer parameters
• Translationally equivariant
• No need to learn trans. equi.
• High performance on images

• Free-form weights
• Highly expressive
• Few data assumptions 
• Need data augmentation
• Works on small images

MLP CNN

This complexity is function of feature bandwidth
Our method: 360° equivariant convolutions:
• Computational complexity: O(#bandwidth)

Naïve rotational weight-tying:
• Computational complexity: O(#rotations)

Harmonic convolution is bandlimited Fourier 
transform on circle. Rotation is translation on 
circle, so phase shift in the (Fourier) response.

Complex-valued feature channelsConvolve with learnable combination of circular 
harmonics to preserve rotational equivariance

Example with Gaussian radial profile

Learnable radial profile Frequency/rotation order

Learnable filter orientation Computational cost

1 complex convolution

4 real convolutions

Data efficiency

CNN

CNN + data aug.

H Net (ours)
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• Only small--medium networks
• No noise rejection yet
• 4x computational cost
• Still need to learn other transformations

Acknowledgements: Fight for Sight UK, Microsoft Research PhD Scholarship, EPSRC Nature 
Smart Cities EP/K503745/1, ENGAGE EP/K015664/1

Sanity check: MNIST-rot

SVM [1]
Transformation RBM [2]
Conv-RBM [3]
CNN [4]
CNN + data aug* [4]
P4CNN rotation pooling [4]
P4CNN [4]
Harmonic Networks (Ours)

11.11
4.2
3.98
5.03
3.50
3.21
2.28
1.69

-
-
-
22k
22k
25k
25k
33k

Method Test error (%) #params

Resampling per-patch leads to rotational 
equivariance about each pixel (yellow dots).

Pixel filter Polar filter

Bandlimit and resample signal

Circular harmonics are defined in polar coordinates,
so resample with Gaussian anti-aliasing filter.

*

*

Rotational invariance

Dog Dog (as well)
Rotational equivariance

5.5° 0°

image 
transformation

black-box functionfeature-space
transformation input

Task:     is rotation, design equivariant layers
and feature-space transformation

Invariant magnitude Equivariant orientation

K K

Response rotates m times over input rotation

Boundary segmentation: BSD500
Feature magnitudes: w/o transfer learning

Holistically-nested edge 
detection (HED) [5]
HED (low # params) [5]
Kivinen et al. [6]
Harmonic Networks (Ours)

0.640

0.697
0.702
0.726

2346k

115k
-

116k

Method #params

0.650

0.709
0.715
0.742

OISODS

Pros
• Good generalization for low data
• Few parameters
• Interpretable features for rotation
• No rotational data augmentation

The Equivariance Condition
Chained convolution of rotation orders m1 and m2

leasd to response order m1+m2. At feature map, all
incoming features must have same rotation order.

Future work: 
• Include explicit noise rejection into convolution
• Consider other continuous groups (Lie Groups)
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black: m=0, blue: m=1, green: m=2
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