Stacked Generative Adversarial Networks Xun Huang^{1,2}, Yixuan Li², Omid Poursaeed^{1,2}, John Hopcroft², Serge Belongie^{1,2} ²Cornell University ¹Cornell Tech # Background Generative Adversarial Networks (GAN): - Two networks competing with each other. - Discriminator *D* tries to distinguish between real samples and samples generated by generator *G*. - G tries to "fool" D. - G will learn to generate samples similar to real data. # **Motivation** Human painters usually first draw some abstract sketches, then gradually add details. To mimic this process, we learn a generator that first produce high-level abstract features, then gradually generate lower level features and finally the image. #### Architecture A stack of GANs, each GAN generates lower-level features conditioned on higher-level features. Each generator is trained with three loss terms: Adversarial loss: the generated features should be indistinguishable from "real" features. $$\mathcal{L}_{G_i}^{adv} = \mathbb{E}_{z_i \sim P_{z_i}, h_{i+1} \sim P_{data, E}} [-\log(D_i(G_i(h_{i+1}, z_i)))]$$ Conditional loss: the generator should make use of the higher-level features it's conditioned on: $$\mathcal{L}_{G_i}^{cond} = \mathbb{E}_{h_{i+1} \sim P_{data,E}, \hat{h_i} \sim P_G(\hat{h_i}|h_{i+1}))} [f(E_i(\hat{h_i}), h_{i+1})]$$ Entropy loss: encourage sample diversity by maximizing a variational lower bound on the entropy (c) SGAN Test (b) SGAN Train ### **Qualitative results** Generated Generated Generated Real (nearest neighbor) Real (nearest neighbor) # Quantitative evaluations | • | <u>Incep</u> | <u>tion</u> | score | on | 4K-1 | 10: | |---|--------------|-------------|-------|----|------|-----| | | - | | | | | | | Method | Score | |--|------------------| | Infusion training [1] | 4.62 ± 0.06 | | ALI [10] (as reported in [63]) | 5.34 ± 0.05 | | GMAN [11] (best variant) | 6.00 ± 0.19 | | EGAN-Ent-VI [4] | 7.07 ± 0.10 | | LR-GAN [65] | 7.17 ± 0.07 | | Denoising feature matching [63] | 7.72 ± 0.13 | | DCGAN [†] (with labels, as reported in [61]) | 6.58 | | SteinGAN [†] [61] | 6.35 | | Improved GAN [†] [53] (best variant) | 8.09 ± 0.07 | | AC - GAN^{\dagger} [43] | 8.25 ± 0.07 | | $\overline{ ext{DCGAN}\left(\mathcal{L}^{adv} ight)}$ | 6.16 ± 0.07 | | $ ext{DCGAN}\left(\mathcal{L}^{adv}+\mathcal{L}^{ent} ight)$ | 5.40 ± 0.16 | | $ ext{DCGAN}~(\mathcal{L}^{adv}+\mathcal{L}^{cond})^{\dagger}$ | 5.40 ± 0.08 | | DCGAN $(\mathcal{L}^{adv} + L^{cond} + \mathcal{L}^{ent})^{\dagger}$ | 7.16 ± 0.10 | | SGAN-no-joint [†] | 8.37 ± 0.08 | | $SGAN^{\dagger}$ | 8.59 ± 0.12 | | Real data | 11.24 ± 0.12 | | | | Trained with labels. Human visual Turing tests on CIFAR-10: We ask AMT workers to distinguish generated images from real images. Our samples "fool" people 24.4% of the time, higher than our best DCGAN baseline (15.6%) and Improved GAN (21.3%).