Identifying First-person Camera Wearers in Third-person Videos
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1. Introduction

Goal: establish person-level correspondences across egocentric
(first-person) and third-person videos. Given a first-person video,
decide who is the wearer in the third-person video.

Video A

Q: Who took video A,
and who took B?

2. Data collec

Several (3-5) people appeared in scene, two wearing Xiaoyi cameras.
- 7 sets of synced videos of 5-10 mins each (5 training, 2 test)
- Training: 3,489 correct pairs, 7,399 incorrect pairs
- Test: 1,051 correct pairs, 2,455 incorrect pairs

3rd-person camera field-of-view

——— Correct pair

Incorrect pair

Person A’s field-of-view

Person B'’s field-of-view

3. Two-Stream Semi-Siamese Models

Learning embedding spaces shared by 15t and 3'-person videos

- spatial overlap between correct pair: spatial CNN (Fig. a)

- temporal correlation: temporal CNN (Fig. b)

- combination: two-stream CNN (Fig. c)

- semi-Siamese: sharing last two convolution layers

- contrastive loss: incorrect pair distance d(x,, x) larger than margin

- triplet loss: Incorrect pair distance d(x,, x;) larger than correct pair
d(x,, xo) by margin m? (Fig. d)
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(b) Motion-domain semi-Siamese network
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(d) Two-stream semi-triplet network
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(¢) Two-stream semi-Siamese network
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4. Successful detection and Failure Cas

Temporal confusion: person A
and B happen to have very
similar motion.

Spatial confusion: person A and
B are heavily occluded, then
masking fails.

Binary classification: decide whether a given 15t-person frame
was taken by the person in a 3-person frame.

Multi-class classification: assign a given 15-person frame to the
correct one of K people appearing in a 37-person frame.
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Test generality of our approach:
Flow magnitude to magnitude 0.285 0.250 d
HOOF to HOOF 0316 0336 Treat one 1t-person video as 3'-
‘Odometry to HOOF 0.302 0.493
Velocity to flow magnitude 0.279 0.216
Baselines HOOF embedding 0.354 0.388 person, use Only temporal cue for
Magnitude embedding 0.276 0.216 H HH 1
Head Motion Signature [19] 0.300 0.290 Identlflcatlon‘
Original Two-stream [25] 0.350 0.460
C3D [27] 0.334 0.505 Network setting Evaluation
Siamese 0.481 0536 Type Method Binary AP Multi Accuracy
Spatial Semi-Siamese 0.528 0.585 Flow magnitude to magnitude 0.389 0.442
Triplet 0.549 0.588 HOOF to HOOF 0.382 0.365
Odometry to HOOF 0.181 0.077
I 0337 0372 Velocity to flow magnitude 0.310 0.327
Temporal Semi-Siamese 0.389 0.445 Baselines  |100F embedding 0405 0.365
Triplet 0.452 0.490 Magnitude embedding 406 0.442
Hosd Niton Sgnature (19] 03 042
Siamese 0.453 0.491 C3D 380 0.327
Not-Siamese 0.476 0.554 Two-stream [25] (temporal part) 0.336 0.365
Two-Stream
Semi-Siamese 0.585 0.639 ours Temporal Semi-Siamese 0412 0500
Triplet 0.621 0.693 Temporal Triplet 0.386 0.500
Table 1. Evaluation in terms of average precision and multi-way Table 2. Results for multiple wearable camera experiments.
classification for baselines and variants of our approach.

Distance metrics exist between correct pairs of 1t- and 3"-person
video. Three innovations achieved best results in learning this metric:
(1) semi-Siamese as opposed to full-Siamese, (2) two-stream CNN to
combine spatial and motion cues, and (3) triplet loss instead of Siamese
contrastive loss.
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