

Identifying First-person Camera Wearers in Third-person Videos

Chenyou Fan¹, Jangwon Lee¹, Mingze Xu¹, Krishna Kumar Singh², Yong Jae Lee², David J. Crandall¹, Michael S. Ryoo¹ ¹Indiana University, ²University of California Davis

1. Introduction

Goal: establish person-level correspondences across egocentric (first-person) and third-person videos. Given a first-person video, decide who is the wearer in the third-person video.

Q: Who took video A, and who took B?

Video A

Video B

2. Data collection

Several (3-5) people appeared in scene, two wearing Xiaoyi cameras.

- 7 sets of synced videos of 5-10 mins each (5 training, 2 test)
- Training: 3,489 correct pairs, 7,399 incorrect pairs
- Test: 1,051 correct pairs, 2,455 incorrect pairs

Person A's field-of-view

Person B's field-of-view

3. Two-Stream Semi-Siamese Models

Learning embedding spaces shared by $1^{\mbox{st}}$ and $3^{\mbox{rd}}\mbox{-} \mbox{person videos}$

- spatial overlap between correct pair: spatial CNN (Fig. a)
- temporal correlation: temporal CNN (Fig. b)
- combination: two-stream CNN (Fig. c)
- semi-Siamese: sharing last two convolution layers
- contrastive loss: incorrect pair distance $d(x_e, x_p)$ larger than margin
- *triplet loss*: Incorrect pair distance $d(x_e, x_1)$ larger than correct pair

$d(x_e, x_0)$ by margin m^2 (Fig. d)

 $y_i = 1$ if x_e and x_n are correct pair, otherwise 0

4. Successful detection and Failure Cases

Spatial confusion: person A and B are heavily occluded, then masking fails.

 $L_{trip}(\theta) = \sum_{i} ||x_{e}^{i} - x_{1}^{i}||^{2} +$

Temporal confusion: person A and B happen to have very similar motion.

(b) Motion-domain semi-Siamese network

Two-stream semi-triplet network

 $\max(0, m^2 - (||x_e^i - x_0^i||^2 - ||x_e^i - x_1^i||^2))$

5. Results

Binary classification: decide whether a given 1st-person frame was taken by the person in a 3rd-person frame. **Multi-class classification**: assign a given 1st-person frame to the correct one of K people appearing in a 3rd-person frame.

Network setting		Evaluation	
Туре	Method	Binary AP	Multi Accurat
	Flow magnitude to magnitude	0.285	0.250
	HOOF to HOOF	0.316	0.336
	Odometry to HOOF	0.302	0.493
	Velocity to flow magnitude	0.279	0.216
Baselines	HOOF embedding	0.354	0.388
	Magnitude embedding	0.276	0.216
	Head Motion Signature [19]	0.300	0.290
	Original Two-stream [25]	0.350	0.460
	C3D [27]	0.334	0.505
Spatial	Siamese	0.481	0.536
	Semi-Siamese	0.528	0.585
	Triplet	0.549	0.588
Temporal	Siamese	0.337	0.372
	Semi-Siamese	0.389	0.445
	Triplet	0.452	0.490
Two-Stream	Siamese	0.453	0.491
	Not-Siamese	0.476	0.554
	Semi-Siamese	0.585	0.639
	Triplet	0.621	0.693

classification for baselines and variants of our approach.

Test generality of our approach: Treat one 1st-person video as 3rdperson, use only temporal cue for

identification.

Network setting		Evaluation	
Туре	Method	Binary AP	Multi Accurac
Baselines	Flow magnitude to magnitude	0.389	0.442
	HOOF to HOOF	0.382	0.365
	Odometry to HOOF	0.181	0.077
	Velocity to flow magnitude	0.310	0.327
	HOOF embedding	0.405	0.365
	Magnitude embedding	0.406	0.442
	Head Motion Signature [19]	0.359	0.462
	C3D [27]	0.380	0.327
	Two-stream [25] (temporal part)	0.336	0.365
Ours	Temporal Semi-Siamese	0.412	0.500
	Temporal Triplet	0.386	0.500

Table 2. Results for multiple wearable camera experiment

6.Conclusion

Distance metrics exist between correct pairs of 1st- and 3rd-person video. Three innovations achieved best results in learning this metric: (1) semi-Siamese as opposed to full-Siamese, (2) two-stream CNN to combine spatial and motion cues, and (3) triplet loss instead of Siamese contrastive loss.

[19] Y. Poleg, C. Arora, and S. Peleg. Head motion signatures from egocentric videos. ACCV 2014.
[25] K. Simonyan and A. Zisserman. Two-stream convolutional networks for action recognition in videos. NIPS 2014.
[27] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning spatiotemporal features with 3d convolutional networks. ICCV 2015.

This work was supported in part by the NSF (CAREER IIS-1253549), and the IU Office of the Vice Provost for Research.