Kxﬂ

Introduction:

» Existing Techniques in Human Facial Image-base Age Estimation :
« Feature extraction: geometry features, engineered features.

« Estimators: classification (SVM), regression (SVR), ranking.
* Deep learning: multi-class CNN, multi-scale CNN, MR-CNN, DEX.
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Theoretical Analysis:
» A new error bound for ranking

/@\
>

~—

~—
@D

Theorem Forany observation (x,y), in which y > 0 is the
actual label (integer), then the following inequality holds:

r(x) — | < maxey(x).

where r(x) is the estimated rank of age, k=1,--- | K — 1.
That is, we can diminish the final ranking error by minimiz-
ing the greatest binary error.

Using Ranking-CNN for Age Estimation

o Step |
— Input x, output y, aggregated rank r(x), E*
— E*: the number of misclassifications when y=k, E-
— E-: the number misclassification when y>k. l
o Step ll Ir(x)-y| =E*-E <E*

— Denote the error produced by each binary ranker as e, 1 =1,...k.
— Sort the sub errors of E* in an increasing order and find out the ordinal relation:
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Finally, |r(x)-y| < E* < e *.

Explanatory example:

When y = 3, the binary outputs are
supposed to be 11000.

If we get 00101

e, =3-3+1=1, e,* =5-3+1=3,

r(x)-y| =0,
E* =2,
e =e,”=3.

» Ranking vs. Softmax

* The expected error for ranking-CNN is bounded by the maximum training
error of basic CNNs adding a term associated with VC dimension.

* Gilven the same training samples, ranking-CNN is more likely to attain
a smaller testing error than multi-class CNN with softmax output.

» Advantages of Ranking-CNN
« Can be seen as an ensemble of CNNs, fused with aggregation.

* Features are learned independently to depict variant aging patterns
— more discriminating power
— In prior work, the same set of features were used for all age groups (rankers)

* Technical consideration with the new error bound
— Derive the expectation of prediction error

— Solve inconsistency issue of sub-models
— Helpful guidance for the training of an ensemble of deep learning models
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Experiments:
» Experiment setup

Pre-train with 26,580 image samples from the unfiltered faces dataset.
~ine-tune on the age estimation benchmark MORPH dataset.
Randomly select 54,362 samples in the age range between 16 and 66.

Comparison of MAE among different combinations of features and estimators.

ENGINEERED FEATURES LEARNED FEATURES
BIF+OLPP ST CNN FEATURE RANKING-CNN FEATURE
CLASSIFICATION SVM 4.99 5.15 3.95
MODEL MULTI-CLASS CNN - - 3.65 -
RANKING RANKING-SVM 5.03 4.88 . 3.63
MODEL RANKING-CNN - - - 2.96

Comparison with state-of-the-art models: MR-CNN, OR-CNN and DEX.

Ranking-CNN | MR-CNN | OR-CNN | DEX
MAE 2.96 3.27 3.34 3.25

Comparison on Cumulative Score and binary accuracy.
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Age error tolerance Age
T test outcomes of all eight combinations of features and estimators.
#1 #2 #3 #4 #5 #6 #7 #8
#1 RANKING-CNN NAN 1 1 1 ] 1 1 1
#2 RANKING-CNN FEATURE 148
TRANKING-SVM 6.36¢ NAN ] 1 0.85 1 1 ]
#3 ST+RANKING-SVM 0 0 NAN 1 0 0 1 1
#4 BIF+OLPP+RANKING-SVM 0 0 1.79¢ 135 NAN 0 0 0.99 0.81
#5 MULTI-CLASS CNN 0 0.14 1 1 NAN 1 1 1
#6 CNN FEATURE+SVM 4.12¢7270 8 90184 1 1 5.43¢=2* NAN 1 1
#7 ST+SVM 0 0 1.94¢ 121 2.00e 4 0 0 NAN  3.66¢
#8 BIF+OLPP+SVM 0 0 4.56¢ 0 0.18 0 0 0.99 NAN
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