Using Ranking-CNN for Age Estimation Shixing Chen¹, Caojin Zhang², Ming Dong¹, Jialiang Le³ and Mike Rao³ ¹Department of Computer Science, ²Mathematics, Wayne State University; ³Research & Innovation Center, Ford Motor Company

Introduction:

- Existing Techniques in Human Facial Image-base Age Estimation :
 - Feature extraction: geometry features, engineered features.
 - Estimators: classification (SVM), regression (SVR), ranking.
 - Deep learning: multi-class CNN, multi-scale CNN, MR-CNN, DEX.
- Ranking-CNN
 - Contains a series of basic CNNs.
 - Initialized with a pretrained base CNN, fine-tuned with ordinal age labels.
 - The binary outputs are aggregated to make the final age prediction.

Theoretical Analysis:

> A new error bound for ranking

For any observation (x, y), in which y > 0 is the Theorem actual label (integer), then the following inequality holds: $|r(x)-y| \le \max_{k} e_k(x),$

where r(x) is the estimated rank of age, $k = 1, \dots, K-1$. That is, we can diminish the final ranking error by minimizing the greatest binary error.

If we get 00101: $|\mathbf{r}(\mathbf{x})-\mathbf{y}|=0,$ $E^{+} = 2,$ $e_k^+ = e_2^+ = 3.$

Ranking vs. Softmax

- The expected error for ranking-CNN is bounded by the maximum training error of basic CNNs adding a term associated with VC dimension.
- Given the same training samples, ranking-CNN is more likely to attain a smaller testing error than multi-class CNN with softmax output.
- Advantages of Ranking-CNN
 - Can be seen as an ensemble of CNNs, fused with aggregation.
 - Features are learned independently to depict variant aging patterns more discriminating power
 - in prior work, the same set of features were used for all age groups (rankers)
 - Technical consideration with the new error bound
 - Derive the expectation of prediction error
 - Solve inconsistency issue of sub-models
 - Helpful guidance for the training of an ensemble of deep learning models

Finally, $|\mathbf{r}(\mathbf{x})-\mathbf{y}| \le \mathbf{E}^+ \le \mathbf{e}_k^+$.

Explanatory example: When y = 3, the binary outputs are

supposed to be 11000. $e_1^+ = 3 - 3 + 1 = 1, e_2^+ = 5 - 3 + 1 = 3,$

Experiments:

- Experiment setup

Comparison of MAE among different combinations of features and estimators.

		ENGINEERED FEATURES		LEARNED FEATURES			
		BIF+OLPP	ST	CNN FEATURE	RANKING-CNN FEATURE		
CLASSIFICATION	SVM	4.99	5.15	3.95	-		
Model	MULTI-CLASS CNN	-	-	3.65	-		
RANKING	RANKING-SVM	5.03	4.88	-	3.63		
MODEL	RANKING-CNN	-	-	-	2.96		

Comparison with state-of-the-art models: MR-CNN, OR-CNN and DEX.

	Ranking-CNN	MR-CNN	OR-CNN	DEX
MAE	2.96	3.27	3.34	3.25

Comparison on Cumulative Score and binary accuracy.

T test outcomes of all eight combinations of features and estimators.

	#1	#2	#3	#4	#5	#6	#7	#8
#1 RANKING-CNN	NAN	1	1	1	1	1	1	1
#2 RANKING-CNN FEATURE +RANKING-SVM	$6.36e^{-148}$	NAN	1	1	0.85	1	1	1
#3 ST+RANKING-SVM	0	0	NAN	1	0	0	1	1
#4 BIF+OLPP+RANKING-SVM	0	0	$1.79e^{-135}$	NAN	0	0	0.99	0.81
#5 MULTI-CLASS CNN	0	0.14	1	1	NAN	1	1	1
#6 CNN FEATURE+SVM	$4.12e^{-276}$	$8.90e^{-184}$	1	1	$5.43e^{-24}$	NAN	1	1
#7 ST+SVM	0	0	$1.94e^{-121}$	$2.00e^{-4}$	0	0	NAN	3.66 <i>e</i> -
#8 BIF+OLPP+SVM	0	0	$4.56e^{-90}$	0.18	0	0	0.99	NAN

Acknowledgement

- NSF: CNS 1637312
- Ford URP:2015-9186R

July 21-26 2017

• Pre-train with 26,580 image samples from the unfiltered faces dataset. Fine-tune on the age estimation benchmark MORPH dataset. Randomly select 54,362 samples in the age range between 16 and 66.

https://github.com/RankingCNN http://www.cs.wayne.edu/~mdong