
IEEE 2017 Conference on 

Computer Vision and Pattern 

Recognition 

Introduction:

➢ Existing Techniques in Human Facial Image-base Age Estimation :

• Feature extraction: geometry features, engineered features.

• Estimators: classification (SVM), regression (SVR), ranking.

• Deep learning: multi-class CNN, multi-scale CNN, MR-CNN, DEX.

➢ Ranking-CNN

• Contains a series of

basic CNNs.

• Initialized with a pre-

trained base CNN, 

fine-tuned with ordinal 

age labels. 

• The binary outputs are

aggregated to make

the final age prediction.

Theoretical Analysis:

➢ A new error bound for ranking
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• Step I

– Input x, output y, aggregated rank r(x),

– E+: the number of misclassifications when y≤k,

– E-: the number misclassification when y>k.

• Step II

– Denote the error produced by each binary ranker as ei, i =1,…k.

– Sort the sub errors of E+ in an increasing order and find out the ordinal relation:

• Step III

➢ Ranking vs. Softmax

• The expected error for ranking-CNN is bounded by the maximum training 

error of basic CNNs adding a term associated with VC dimension.

• Given the same training samples, ranking-CNN is more likely to attain 

a smaller testing error than multi-class CNN with softmax output.

➢ Advantages of Ranking-CNN

• Can be seen as an ensemble of CNNs, fused with aggregation.

• Features are learned independently to depict variant aging patterns

– more discriminating power

– in prior work, the same set of features were used for all age groups (rankers)

• Technical consideration with the new error bound

– Derive the expectation of prediction error

– Solve inconsistency issue of sub-models

– Helpful guidance for the training of an ensemble of deep learning models

Experiments:

➢ Experiment setup

• Pre-train with 26,580 image samples from the unfiltered faces dataset.

• Fine-tune on the age estimation benchmark MORPH dataset.

• Randomly select 54,362 samples in the age range between 16 and 66.
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Finally, |r(x)-y| ≤ E+ ≤ ek
+.

Explanatory example:

When y = 3, the binary outputs are 

supposed to be 11000.

If we get 00101:

e1
+ =3-3+1=1, e2

+ =5-3+1=3,

|r(x)-y| = 0,

E+   = 2,

ek
+ = e2

+ =3.

Comparison of MAE among different combinations of features and estimators.

Comparison with state-of-the-art models: MR-CNN, OR-CNN and DEX.

Comparison on Cumulative Score and binary accuracy.

E-

E+

|r(x)-y| = E+ - E- ≤ E+

T test outcomes of all eight combinations of features and estimators.

https://github.com/RankingCNN

http://www.cs.wayne.edu/~mdong

https://github.com/RankingCNN
http://www.cs.wayne.edu/~mdong

