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Computing the Gradient

Abstract

This paper provides a direct solution as solving a new Grassmann optimization

problem. By this way calculating latent embedding becomes part of optimization

on manifolds and the recently developed manifold optimization methods can be

applied. The primary contributions of this paper are:

➢ We take a straightforward way to optimize the Sparse Spectral Clustering（SSC）
objective introduced in[1]{Lu,Yan,Lin2016} by adopting Grassmannian manifold
optimization strategy.

➢ We explore the application of the new algorithm for dimensionality reduction .

[1] C. Lu, S. Yan, and Z. Lin. Convex sparse spectral clustering: Single-view to multi-view. IEEE

Transactions on Image Processing, 25(6):2833–2843, 2016
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Let                                             be a set of N  data points to be clustered,   where 

D  is the dimension of data. The Spectral Clustering (SC) method solve the 

following constrained optimization for computing 

Summarization of SSC
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where d<N, and L is the  normalized graph Laplacian matrix, and then conduct the 

k-means on the normarized rows of U to cluster them into K groups. 

The SSC aims at solving the following relaxed convex problem which optimize 

the new variable P = UUT instead. 

In the ideal scenarios, UUT can be permuted to block diagonal structure, The Sparse 

Spectral Clustering (SSC) in recent work [1] exploited the idea of inducing or enforcing 

sparsity in the Spectral Clustering , 

A better strategy is to re-form the problem on the Grassmann manifold as follows:

the quotient space of Stiefel  manifold under   

this equivalent relation: ST(d,N)/O(d) := {YQ: Y∈ST(d,N),  Q∈O(d) } is the 

representation of Grassmann manifold G(d,N);
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f(UQ) = f(U);Let  f=                                   , for any Q∈O(d) , we have
1
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Introduction to GSC

Consider the second term of the objective function. First, according to the chain 

rule, we have: 

For the first term in the objective function                                        
1

TT UUL,UUf 

we note that: = tr(UUTL) = tr(UTLU). L,UU T

Hence                           = LU + LTU = 2LUL,UU T
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Thus the Euclidean derivative of the objective function f(U) is:

∇ f (U) = 2LU + βivec(D).IUUs.t.,UUL,UUmin TTT

RU dN
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The orthogonal constraint UTU = I defines the Stiefel

IUUs.t.,UUL,UUmin TTT

RU dN
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For problem

manifold ST(d,N);

The Sparse Spectral Clustering Algorithm

At the representative U of a Grassmann point [U], the Riemann gradient 

can be simply calculated as: grad[U] f = (I−UUT) ∇f(U). 

Let  O(d)={Q∈Rd×d |QTQ = I},

Algorithm 1 Grassmann Manifold Optimization Assisted Spectral Clustering 

(GSC) Algorithm
Input：The data matrix X = [x1,x2,..., xN], the number of latent dimension d and the

trade-off parameter β.

Output: The sparse latent representation U. 

1: Form the affinity matrix W, and compute the initial latent representation U(0);

2: Compute the normalized Laplacian matrix L;

3: With the initial U(0), call the Riemannian trust-region (RTR)algorithm 

in ManOpt toolbox to optimize the objective, until a pre-defined termination 

criterion is satisfied.

Table 2. Clustering results in terms of accuracy (%) and 

standard deviation on ORL dataset.

Table 1. Clustering results in terms of accuracy (%) and 

standard deviation on Yale B dataset.

Figure 1. Examples of the face datasets: 

(a) Extended Yale B and (b) ORL faces.

(a) (b)

Figure 2. Visualization of the data dimension reduction of PCA of

original data set (a) and (d); matrix U of SSC (b) and (e), and U

of GDR (c) and (f): 5 classes case on the first row and 8 classes

case on the second row for the YaleB faces data set.

1. This paper proposes the GSC model which adopts Grassmann manifold

optimization strategy to optimize the sparse spectral clustering objective

introduced in [1] in a straight forward way.

2. The major difference between our method and [1] is that ours guarantees UUT = I

(bez on Grassmann) while a big relaxation to this constraint in [1].

3. We also propose the GDR model which visualizes the latent representation of

original data as the results from dimensionality reduction.

Conclusion

Experiments on Clustering Experiments on 

Dimensionality Reduction


