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ADStLIe Let f=(UUT, L) + gUUT |, forany QEO(d) , we have H(UQ) = f(U);

This paper provides a direct solution as solving a new Grassmann optimization A better strategy is to re-form the problem on the Grassmann manifold as follows:
roblem. By this w lculating latent em I m rt of optimization .
proble y this way calculating latent embedding becomes part of optimizatio in <UUT,L>+,8HUUTH1

on manifolds and the recently developed manifold optimization methods can be UeG(d,N)

applied. The primary contributions of this paper are:
> We take a straightforward way to optimize the Sparse Spectral Clustering (SSC) omputing the Gradient
objective Introduced In[1]{Lu,Yan,Lin2016} by adopting Grassmannian manifold  gor the first term in the objective function f = <UUT, |_> 4 'BHUUTH
optimization strategy. !

» \We explore the application of the new algorithm for dimensionality reduction . we note that: <UU T L> = tr(UUTL) = tr(UTLU).
immarization c Hence V(UU ™, L)= LU+ LTU = 2LU
Let X = [Xy X, XN] c R”Nbe a set of N data points to be clustered, where Consider the second term of the objective function. First, according to the chain

D is the dimension of data. The Spectral Clustering (SC) method solve the rule, we have: ( Y
followi i imization f i N = ojuuT| r oUUT
ollowing constrained optimization for computing 7/ « R Veo Ll vec(sgn(UUT ))

min (W7, L) ,st. UU = | oU oU

U eRN*d \ J
where d<N, and L is the normalized graph Laplacian matrix, and then conduct the ouu '

. Jrapt =ap atid! where :(]2+TNNNN)([/®]N)
k-means on the normarized rows of U to cluster them into K groups. oU N aJU’T :

In the ideal scenarios, UUT can be permuted to block diagonal structure, The Sparse Define the column vector Das /0 = U vec(sgn(UU ! ))T
Spectral Clustering (SSC) In recent work [1] exploited the idea of inducing or enforcing _ o o _ _
sparsity in the Spectral Clustering,, Thus the Euclidean derivative of the objective function f(U) is:

min (UUT, L)+ AUT] st UTU = | V f(U) = 2LU + Sivec(D).

The SSC aims at solving the following relaxed convex problem which optimize he Snarse Spnectrz 1stering Alaot

the new variable P = UUT instead.

i <P, L> . 'BHPH1 St 0<P <] tr(P) _ At the representative U of a Grassmann point [U], the Riemann gradient

PegN N can be simply calculated as: grad,;f= (I-UUT) V{(U).
e | Algorithm 1 Grassmann Manifold Optimization Assisted Spectral Clustering
JUUSTION L (GSC) Algorithm
- T T T _ Input: The data matrix X = [X{,X,,..., X\], the number of latent dimension d and the
For problem Ur;nRIQd<UU ’ L> T 'BHUU ||1 st UU =1 trade-off parameter .
The orthogonal constraint UTU = | defines the Stiefel manifold ST(d,N); Output: The sparse latent representation U.
_ _ _ 1: Form the affinity matrix W, and compute the initial latent representation U(©;
Let O(d)={QER™4|QTQ = I},the quotient space of Stiefel manifold under 2: Compute the normalized Laplacian matrix L;

this equivalent relation: ST(d,N)/O(d) :={YQ: Y&ST(d,N), Q& 0O(d) } Is the 3: With the initial U®©), call the Riemannian trust-region (RTR)algorithm
representation of Grassmann manifold G(d,N); In ManOpt toolbox to optimize the objective, until a pre-defined termination

(&) (b)

Figure 1. Examples of the face datasets: .
(a) Extended Yale B and (b) ORL faces. (a) (b) ()
Method Ncut SSC GSC
K =5 61.56(9.34) | 95.64(5.90) | 96.58(3.94)
K = 56.77(8.84) | 88.95(4.76) | 91.65(4.64)
K =10 | 48.39(7.61) | 82.86(4.86) | 85.24(4.34)
K =12 | 46.94(4.82) | 80.17(4.40) | 82.64(4.20) - L " r . & i
K =15 | 4551(4.06) | 76.91(1.57) | 77.82(1.63) '. E}ib o b i :
K =18 | 45.33(3.80) | 75.06(1.59) | 76.84(1.49) :' :.,,h_'._.‘ , ' *_ - a

Table 1. Clustering results in terms of accuracy (%) and
standard deviation on Yale B dataset.

Method Ncut SSC GSC (d) (e) (f)
K =5 |59.856.98) | 97.25(6.62) | 97.80(3.41)

)
K = 55.75(6.31) | 91.25(5.89) | 93.50(5.41)
K =10 | 53.255.91) | 80.95(10.67) | 82.77(6.32) Figure 2. Visualization of the data dimension reduction of PCA of
K =12 | 51.35(6.98) | 79.55(11.32) | 82.50(10.82) original data set (a) and (d); matrix U of SSC (b) and (e), and U
K =15 | 50.47(5.07) | 78.85(7.06) | 79.67(4.79) of GDR (c) and (f): 5 classes case on the first row and 8 classes
K =18 | 50.10(4.76) | 77.95(7.41) | 78.96(5.21) case on the second row for the YaleB faces data set.

Table 2. Clustering results in terms of accuracy (%) and
standard deviation on ORL dataset.

' \ ' ' \

1. This paper proposes the GSC model which adopts Grassmann manifold
optimization strategy to optimize the sparse spectral clustering objective
Introduced In [1] in a straight forward way.

2. The major difference between our method and [1] is that ours guarantees UUT = |
(bez on Grassmann) while a big relaxation to this constraint in [1].

3. We also propose the GDR model which visualizes the latent representation of
original data as the results from dimensionality reduction.
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