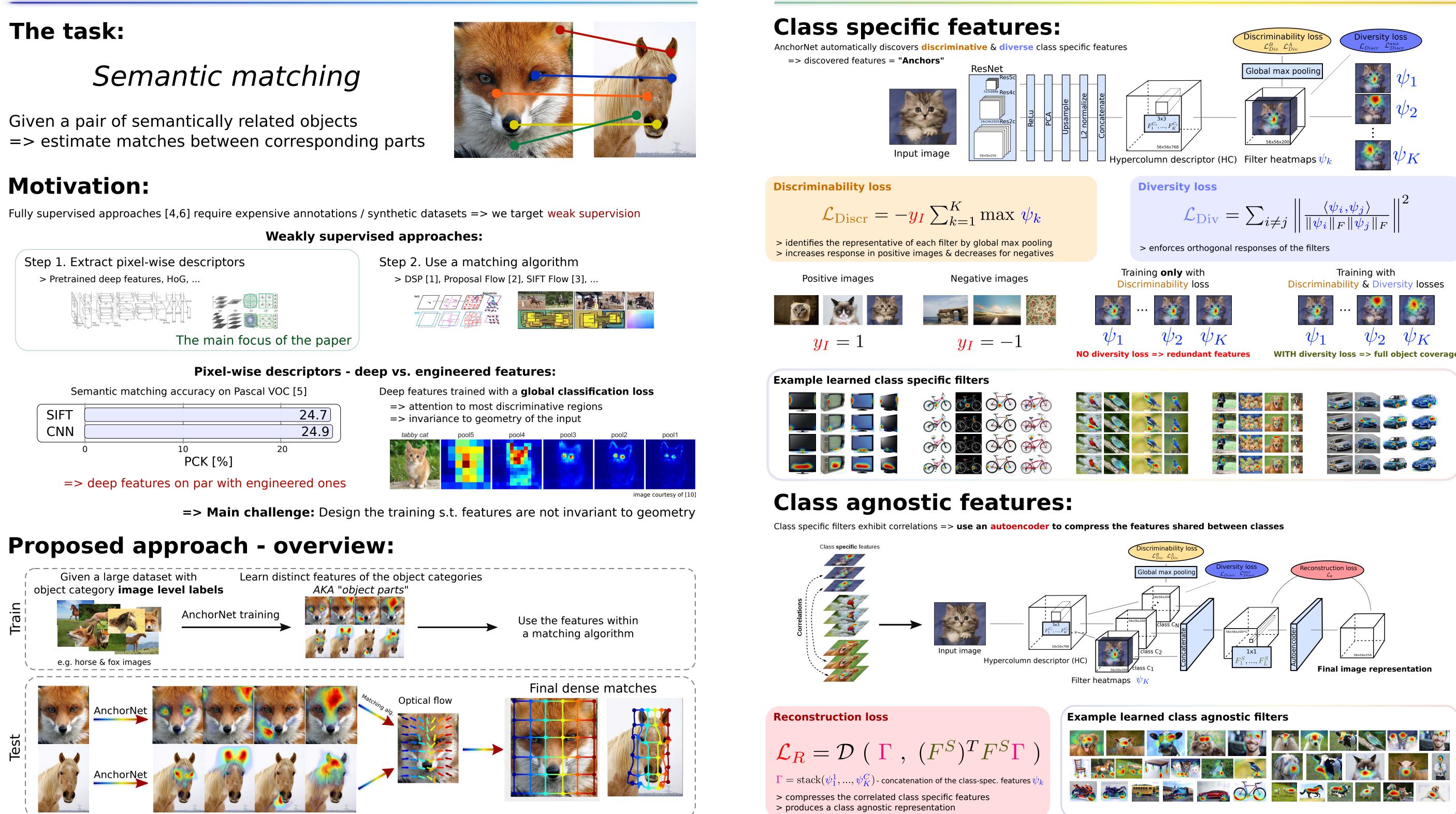
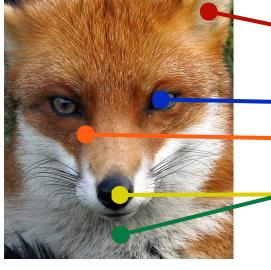

AnchorNet: A Weakly Supervised Network to Learn Geometry-sensitive Features For Semantic Matching


Introduction



Semantic matching accuracy on Pascal VOC [5]

David Novotny^{1,2}, Diane Larlus², Andrea Vedaldi¹

AnchorNet architecture

¹ Visual Geometry Group, University of Oxford, UK

² Naver Labs Europe, Grenoble, France

Semantic matching:

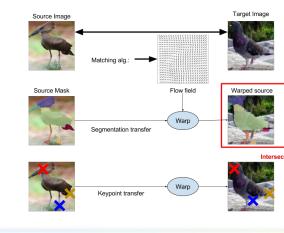
Given a pair of images of the same object category => estimate matches between corresponding parts

Evaluated approach

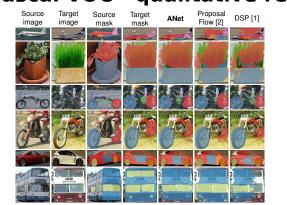
> DSP [1]

- Step 1. Extract pixelwise descriptors
- > AnchorNet features > ANet-class ... class specific features
 > ANet ... class agnostic features
- > SIFT, HoG, Hypercolumns

Benchmarks



PF Dataset [2] > dense correspondence annotations


6 different object classe

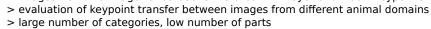
Evaluation procedure

> Proposal Flow [2]

Pascal VOC - qualitative results

Cross-class semantic matching:

Given a pair of images of **related object categories** => estimate matches between corresponding parts


Benchmarks

Pascal Parts [7]

- > related object classes share part segmentations
- > e.g. "car" and "bus" classes share "wheel", "door", "window", ... parts > evaluation of segmentation transfer between images of meaningful classes
- > low number of categories, large number of shared parts

Animal Parts [8]

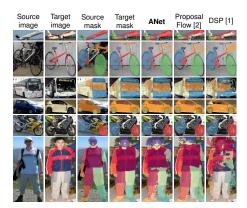
> images from the ImageNet dataset annotated with "eye" and "foot" keypoints

Animal Parts - gualitative results

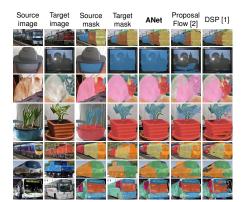
Conclusions

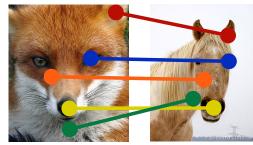
i Proposed **AnchorNet** - a weakly supervised architecture for learning geometry-sensitive features ightarrow The learned features are invariant to appearance making them suitable for semantic matching tasks \rightarrow Experimentally verified that the features improve performance of existing matching algorithms State-of-the-art performance on semantic matching and on novel cross-class semantic matching task

🧀 🔟 🔛

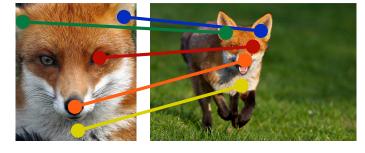


Step 2. Match descriptors using a matching alg.


ascal Parts - se	egme	enta	τιοι	n tra	anst	er -	ΙΟυ									Iol	J : Intersed	tion-ove	-Union A	KA Jacca	rd ind
	mean	aero	bike	bird	boat	bottle	bus	car	cat	chair	COW	dog	horse	mbike	person	plant	sheep	sofa	table	train	tv
OSP + ANet-class	0.45	0.31	0.49	0.32	0.53	0.75	0.51	0.47	0.23	0.53	0.37	0.20	0.33	0.41	0.22	0.46	0.45	0.77	0.45	0.48	0.7
SP + ANet	0.45	0.29	0.47	0.29	0.52	0.73	0.50	0.46	0.25	0.53	0.37	0.21	0.34	0.39	0.20	0.44	0.45	0.77	0.45	0.51	0.7
SP + SIFT [1]	0.39	0.25	0.46	0.21	0.48	0.63	0.50	0.45	0.19	0.48	0.30	0.14	0.26	0.35	0.13	0.40	0.37	0.66	0.37	0.48	0.6
roposal Flow + ANet-class	0.43	0.26	0.43	0.28	0.54	0.71	0.50	0.45	0.24	0.54	0.32	0.21	0.28	0.35	0.21	0.45	0.40	0.74	0.46	0.50	0.7
roposal Flow + ANet	0.42	0.26	0.41	0.26	0.53	0.70	0.49	0.45	0.25	0.54	0.31	0.19	0.28	0.31	0.17	0.43	0.39	0.74	0.44	0.52	0.6
	0.41	0.25	0.45	0.23	0.54 r - E	0.70	0.49	0.44	0.19	0.53	0.30	0.16	0.25	0.35	0.16	0.41	0.35	0.74	0.44	0.50	0.6
										K percer	tage of corr	ectly transf	ered keypoir		0.16			0.74	0.44	0.50	0.6
ascal Parts - ko	еуро	int	trar	sfe	r - F	PCK	@ 0. ()5 ['	%] _{PC}	K percer	tage of corr table	ectly transf	ered keypoir					-	0.44		0.6
SP + ANet-class SP + ANet-class	eypo mean 0.24 0.23	int aero 0.23 0.22	bike 0.28 0.25	boat 0.06 0.06	r - F bottle 0.38 0.35	DCK bus 0.44 0.42	0.0 car 0.39 0.34	D5 [⁴ chair 0.14 0.14	mbike 0.19	K percer 9 Sofa 0.16 0.17	tage of corr table 0.11 0.13	ectly transf e train 0.13 8 0.14	ered keypoir n tv 3 0.41 1 0.40		PF D	atas	iet	-	NuCs for		
ASCAL Parts - ke SP + ANet-class SP + ANet SP + SIFT [1]	eypo mean 0.24 0.23 0.18	aero 0.23 0.22 0.17	bike 0.28 0.25 0.30	boat 0.06 0.05	r - F bottle 0.38 0.35 0.19	bus 0.44 0.42 0.33	car 0.39 0.34 0.34	D5 [⁰ chair 0.14 0.14 0.09	mbike 0.19 0.17 0.17	K percer 9 sofa 0.16 0.17 0.12	tage of corr table 0.11 0.13 2 0.09	ectly transf e train 0.13 0.14 0 0.12	ered keypoir 1 tv 3 0.41 4 0.40 2 0.18	- =	PF D Matching	atas	iet	A	NUCs for	PCR	loG [
roposal Flow + HoG [2] ascal Parts - ke ISP + ANet-class ISP + ANet ISP + SIFT [1] roposal Flow + ANet-class roposal Flow + ANet	eypo mean 0.24 0.23	int aero 0.23 0.22	bike 0.28 0.25	boat 0.06 0.06	r - F bottle 0.38 0.35	DCK bus 0.44 0.42	0.0 car 0.39 0.34	D5 [⁴ chair 0.14 0.14	mbike 0.19	K percer 9 Sofa 0.16 0.17	tage of corr table 0.11 0.13 0.09 2 0.09	ectly transf e train 0.13 0.14 0.12 7 0.10	ered keypoir 1 tv 3 0.41 4 0.40 2 0.18 0 0.24		PF D	atas Fea g	iet	A Net-cla	AuCs for ss Al	PCR Net H	


ate-of-the-art performance on the segmentation transfer tag orNet features improve performance of matching algorithms

norNet vs AnchorNet-class perform on par => successfull conversion from class specific to class agnostic features tching of AnchorNet features similar to matching engineered features with a sophisticated algoritl


Transfer accuracy between a	Mean PCK over all matches											
AnchorNet SIFT / HOG	PCK Animal domains 1: primate 2: carnivore 0:5 aquaticbird 0:4 monkey 0:3 feline 0:3 6: dog 7: reptile	Pascal Part > Mean IoU ov	Feat PCK PCK	$(\alpha = 0.05)$ $(\alpha = 0.1)$	ANet 0.11 0.24	5	ANet 0.13 0.32	0.1	rans		- Iol	J
da 199	0.2 8: hoofedmammal 9: wading bird 0.1 10: lizard 11: passerine		bicycle mean ↓ mbike 0.37 0.35 0.29 0.28 0.35 0.32	mbike ↓ bicycle 0.45 0 0.40 0	bus car ↓ ↓ car bus 0.52 0.35 0.40 0.27 0.50 0.32	bus dog ↓ ↓ car cat 0.36 0.22 0.30 0.10 0.37 0.23	y cat ↓ dog 5 0.25 6 0.16	sheep do ↓ dog she 0.34 0. 0.20 0.	og horse ↓ ↓ eep cow 27 0.31 19 0.26	e cow ↓ horse 0.47 0.31	sheep ↓ cow 0.37 0.28	cov ↓ shee 0.5 0.5

AnchorNet features bring significant improvement over considered baseline features State-of-the-art performance on both datasets

References

et al. "Deformable spatial pyrami et al. "Proposal flow." CVPR 2016 et.al. "Sift flow: Dense correspondence across scenes and its applications." CVPR 2011 y et al. "Universal correspondence network." NIPS 2016. g et al. "Do convnets learn correspondence?" NIPS" 2014.

u et al. "Learning dense correspondence via 3d-guided cycle consistency." CVPR 2016 n et al. "Detect what you can: Detecting and representing objects using holistic mode and body parts." CVPR 2014.
other al. "I have seen enough: Transferring parts across categories." BMVC 2016.

NAVER LABS EUROPE