

Deep metric learning

- Most deep metric learning methods enforce a local loss function to pull similar examples to each other and push dissimilar examples farther apart in an embedding space.
- However, these approaches suffer from the discrepancy between the training objective, and the actual evaluation metrics used in tasks such as clustering and retrieval.

Deep metric learning via facility location

 Learn to cluster a batch of data, and makes use of the evaluation metric such as normalized mutual information during training.

Recent related works

- [Schroff et al.] FaceNet: a unified embedding for face recognition and clustering. In CVPR 2015
- [Song *et al.*] Deep metric learning via lifted structured feature embedding.
- In *CVPR* 2016
- [Sohn et al.] Improved deep metric learning with multi-class n-pair loss objective. In NIPS 2016

Deep Metric Learning via Facility Location

Hyun Oh Song¹, Stefanie Jegelka², Vivek Rathod¹, Kevin Murphy¹ ¹Google Research, ²MIT

Metric Learning via Facility Location

 Enforce the facility location score given the ground truth clustering assignment to be "higher" than the score given any other clustering assignments "at least" by the structured margin delta.

Normalized mutual information

 Normalized mutual information compares the quality of clustering assignment.
 (0: worst clustering, 1: perfect clustering)

Structured margin

 First approximately maximization. This which provide the k Then, refine the greases the score increases the score 	optimize the loss augr procedure incrementally best marginal benefit to edy solution by looping er medoid with any othe	ented i y selections the loss over e er cluste	nfe ts c s au each	efin erence luster ugmen	emedoid ted sco ts whic	ent edy ds ore.	
	Ā	lgorithm	2: L	oss augm	ented refi	nement fo	or (*)
$\begin{array}{l} \max_{S \subseteq V_i} F(S; \Theta) + \epsilon \\ S \leq k \end{array}$ Algorithm 1: Loss augmet Input $: X \in \mathbb{R}^{m \times d}, y$ Output $: S \subseteq \mathcal{V}$ Initialize: $S = \{\emptyset\}$ Define $: A(S) := F(X)$ 1 while $ S < \mathcal{Y} $ do 2 $ i^* = \arg \max_{i \in \mathcal{V} \setminus S} A(S) $ 3 $ S := S \cup \{i^*\}$ 4 end 5 return S	$\gamma \Delta_{\text{NMI}}(S, S_i^*)$ 1 2 $y^* \in \mathcal{Y} ^m, \gamma$ 3 $(S, S; \Theta) + \gamma \Delta (g(S), \mathbf{y}^*)$ 4 $(i_i) - A(S)$ 5 6 7 8	Input : Output : Initialize: for $t < T$ $ // P \in$ $y_{PAM} =$ // Up for $k <$ // Up for $k <$ // Up for $k <$ S[$X \in S$ $S =$ do $erfo$ $= g(X)$ dat (\mathcal{Y}) Sw cl sc $k] =$	$ \mathbb{E} \mathbb{R}^{m \times d}, $ $ = S_{init}, t = $ $ frm clus $ $ frm r $ $ fr$	$\mathbf{y}^* \in \mathcal{Y} ^2$ = 0 medoids current if it $\max_{i=k} F(\mathcal{Y})$ $(g(S \setminus \{S\}$	$m, S_{ ext{init}}, f$ signment per cl medoid increase $X_{\{i: \mathbf{y}_{PAM}[i]=}$ $Y_{\{k]} \cup \{j\}$	y,T uster in es the $_{=k}, \{j\}; \Theta$)), y*)
Clustering &	Retrieval Ex	Kper NN	~ir ⁄11	nen R@1	r@2	R@4	R@8
CUB200	Triplet semihard (CVPR	(5) 55.6	38	42.59	55.03	66.44	77.23

		00.00	HO.01	00.00	00.00	
	Npairs $(NIPS16)$	57.24	45.37	58.41	69.51	79.49
	Clustering (Ours)	59.23	48.18	61.44	71.83	81.92
Cars 196		NMI	R@1	R@2	R@4	R@8
	Triplet semihard (CVPR15)	53.35	51.54	63.78	73.52	82.41
	Lifted struct (CVPR16)	56.88	52.98	65.70	76.01	84.27
	Npairs $(NIPS16)$	57.79	53.90	66.76	77.75	86.35
	Clustering (Ours)	59.04	58.11	70.64	80.27	87.81
			NMI	R@1	R@10	R@100
Stanford Products	Triplet semihard (CV	Triplet semihard (CVPR15) Lifted struct (CVPR16) Npairs (NIPS16)		66.67	82.39	91.85
	Lifted struct (CVP			62.46	80.81	91.93
	Npairs (NIPS16			66.41	83.24	93.00
	Clustering (Our	Clustering (Ours)		67.02	83.65	93.23

Summary

- Structural prediction framework for directly optimizing the clustering metric (NMI) with a global view of the embedding space
- State of the art results on clustering and retrieval measured in NMI and recall@K evaluation metrics.

hyunsong@google.com