
Deep Metric Learning via Facility Location
Hyun Oh Song1, Stefanie Jegelka2, Vivek Rathod1, Kevin Murphy1

1Google Research, 2MIT

Deep metric learning

After learningBefore learning

F̃

 !

y⇤ =

y1 =

yn =

�(y1, y⇤)

�(yn, y⇤)
�
n

(
...

. . .

F̃

 !
F̃

 !

F̃

 !
F̃

 !

y⇤ =

F̃

 !

y⇤ =

F̃

 !

y⇤ =

y1 =

F̃F
 !

F̃

 !
F̃

 !

y⇤ =

F̃

 !

y⇤ =

y1 =

F
F̃

 !

y⇤ =

y1 =

F̃F
 !

F̃

 !
F̃

 !

y⇤ =

F̃

 !

y⇤ =

y1 =

yn =

F̃

 !

y⇤ =

y1 =

yn =

�(y1, y⇤)

�(yn, y⇤)

F̃

 !

y⇤ =

y1 =

yn =

�(y1, y⇤)

�(yn, y⇤)

F̃

 !

y⇤ =

y1 =

yn =

�(y1, y⇤)

�(yn, y⇤)
�

F̃

 !

y⇤ =

y1 =

yn =

�(y1, y⇤)

�(yn, y⇤)
�
n

...

F̃

 !

y⇤ =

y1 =

yn =

�(y1, y⇤)

�(yn, y⇤)
�
n

(
...

score

F̃

 !

y⇤ =

y1 =

yn =

�(y1, y⇤)

�(yn, y⇤)| {z }
CNN �

n

(
...

. . .

CNN

Deep metric learning via facility location

Facility Location Problem

min

⇥2⌦

X

i

2

4
max

S✓Vi
|S|k

F (S;⇥) + ��NMI(S, S
⇤
i )� F (S⇤

i ;⇥)

3

5

+

F : 2

V ! R, submodular

F (S) = �
X

i2V

min

j2S
D⇥ (Xi, Xj)V = { X }

F : 2V ! R
F ({ X })

A ⇢ B ✓ V e /2 B

F (A [ e)� F (A) � F (B [ e)� F (B)

V = { X }
F : 2V ! R
F ({ X })

A ⇢ B ✓ V e /2 B

F (A [ e)� F (A) � F (B [ e)� F (B)

min

⇥2⌦

X

i

2

4
max

S✓Vi
|S|k

F (S;⇥) + ��NMI(S, S
⇤
i )� F (S⇤

i ;⇥)

3

5

+

F : 2

V ! R, submodular

F (S) = �
X

i2V

min

j2S
D⇥ (Xi, Xj)

min

⇥2⌦

X

i

2

4
max

S✓Vi
|S|k

F (S;⇥) + ��NMI(S, S
⇤
i )� F (S⇤

i ;⇥)

3

5

+

F : 2

V ! R, submodular

F (S) = �
X

i2V

min

j2S
D⇥ (Xi, Xj)

min

⇥2⌦

X

i

2

4
max

S✓Vi
|S|k

F (S;⇥) + ��NMI(S, S
⇤
i )� F (S⇤

i ;⇥)

3

5

+

F : 2

V ! R, submodular

F (S) = �
X

i2V

min

j2S
D⇥ (Xi, Xj)

min

⇥2⌦

X

i

2

4
max

S✓Vi
|S|k

F (S;⇥) + ��NMI(S, S
⇤
i )� F (S⇤

i ;⇥)

3

5

+

F : 2

V ! R, submodular

F (S) = �
X

i2V

min

j2S
D⇥ (Xi, Xj)

min

⇥2⌦

X

i

2

4
max

S✓Vi
|S|k

F (S;⇥) + ��NMI(S, S
⇤
i )� F (S⇤

i ;⇥)

3

5

+

F : 2

V ! R, submodular

F (S) = �
X

i2V

min

j2S
D⇥ (Xi, Xj)

Metric Learning via Facility Location

min

⇥2⌦

X

i

2

4
max

S✓Vi
|S|k

F (S;⇥) + ��NMI(S, S
⇤
i )� F (S⇤

i ;⇥)

3

5

+

F : 2

V ! R, submodular

F (S) = �
X

i2V

min

j2S
D⇥ (Xi, Xj)

min

⇥2⌦

X

i

2

4
max

S✓Vi
|S|k

F (S;⇥) + ��NMI(S, S
⇤
i )� F (S⇤

i ;⇥)

3

5

+

F : 2

V ! R, submodular

F (S) = �
X

i2V

min

j2S
D⇥ (Xi, Xj)

✓
|Vi|
k

◆

possible 
combinations

min

⇥2⌦

X

i

2

4
max

S✓Vi
|S|k

F (S;⇥) + ��NMI(S, S
⇤
i )� F (S⇤

i ;⇥)

3

5

+

F : 2

V ! R, submodular

F (S) = �
X

i2V

min

j2S
D⇥ (Xi, Xj)

Structured margin

� (y, y⇤) = 1�NMI (y, y⇤)

• Normalized mutual information compares 
the quality of clustering assignment.  

   (0: worst clustering, 1: perfect clustering)

Normalized mutual informationStructured margin

Loss augmented inference & refinement

r⇥F (X, S; ⇥) = �
X

i2|X|

"
f(Xi; ⇥) � f(Xj⇤(i); ⇥)

||f(Xi; ⇥) � f(Xj⇤(i); ⇥)||

• r⇥

�
f(Xi; ⇥) � f(Xj⇤(i); ⇥)

�
#

(12)

where j⇤
(i) denotes the index of the closest facility location

in the set SPAM. The gradient for the oracle scoring function
can be derived by computing

r⇥
˜F (X,y⇤

i ; ⇥) =

X

k

r⇥F
�
X{i: y⇤[i]=k}, {j⇤

(k)}; ⇥
�

(13)

Equation 11 is the formula for the exact subgradient and
we find an approximate maximizer SPAM in the equation
(section 3.4) so we have an approximate subgradient. How-
ever, this approximation works well in practice and have
been used for structured prediction setting [20, 34].

3.4. Loss augmented inference

We solve the optimization problem (⇤) in Equation 6 in
two steps. First, we use the greedy Algorithm 1 to select
an initial good set of facilities. In each step, it chooses the
element i⇤ with the best marginal benefit. The running time
of the algorithm is O

�
|Y|3 · |V|

�
, where |Y| denotes the

number of clusters in the batch and V = {1, . . . , |X|}. This
time is linear in the size of the minibatch, and hence does
not add much overhead on top of the gradient computation.
Yet, if need be, we can speed up this part via a stochastic
version of the greedy algorithm [22].

This algorithm is motivated by the fact that the first term,
F (X,S; ⇥), is a monotone submodular function in S. We
observed that throughout the learning process, this term is
large compared to the second, margin term. Hence, in this
case, our function is still close to submodular. For approxi-
mately submodular functions, the greedy algorithm can still
be guaranteed to work well [7].

Yet, since A(S) is not entirely submodular, we refine the
greedy solution with a local search, Algorithm 2. This algo-
rithm performs pairwise exchanges of current medoids S[k]

with alternative points j in the same cluster. The running
time of the algorithm is O

�
T |Y|3 · |V|

�
, where T is the

maximum number of iterations. In practice, it converges
quickly, so we run the algorithm for T = 5 iterations only.

Algorithm 2 is similar to the partition around medoids
(PAM) [15] algorithm for k-medoids clustering, which in-
dependently reasons about each cluster during the medoid
swapping step. Algorithm 2 differs from PAM by the struc-
tured margin term, which involves all clusters simultane-
ously.

The following lemma states that the algorithm can only
improve over the greedy solution:

Algorithm 1: Loss augmented inference for (⇤)
Input : X 2 Rm⇥d, y⇤ 2 |Y|m, �
Output : S ✓ V
Initialize: S = {;}
Define : A(S) := F (X, S; ⇥) + �� (g(S), y⇤

)

1 while |S| < |Y| do
2 i⇤ = arg max

i✓V\S
A (S [ {i}) � A(S)

3 S := S [ {i⇤}
4 end
5 return S

Lemma 1. Algorithm 2 monotonically increases the objec-
tive function A(S) = F (X, S; ⇥) + �� (g(S), y⇤

).

Proof. In any step t and for any k, let c = S[k] be the
kth medoid in S. The algorithm finds the point j in the kth
cluster such that A((S\{c})[{j}) is maximized. Let j⇤ be
a maximizing argument. Since j = c is a valid choice, we
have that A((S\{c})[{j⇤}) � A((S\{c})[{c}) = A(S),
and hence the value of A(S) can only increase.

In fact, with a small modification and T large enough,
the algorithm is guaranteed to find a local optimum, i.e., a
set S such that A(S) � A(S0

) for all S0 with |S�S0| = 1

(Hamming distance one). Note that the overall problem is
NP-hard, so a guarantee of global optimality is impossible.

Lemma 2. If the exchange point j is chosen from X and
T is large enough that the algorithm terminates because it
makes no more changes, then Algorithm 2 is guaranteed to
find a local optimum.

3.5. Implementation details

We used Tensorflow [1] package for our implementa-
tion. For the embedding vector, we `2 normalize the em-
bedding vectors before computing the loss for our method.
The model slightly underperformed when we omitted the
embedding normalization. We also tried solving the loss
augmented inference using Algorithm 2 with random ini-
tialization, but it didn’t work as well as initializing the algo-
rithm with the greedy solution from Algorithm 1.

For the network architectures, we used the Inception
[32] network with batch normalization [11] pretrained on
ILSVRC 2012-CLS [24] and finetuned the network on our
datasets. All the input images are first resized to square
size (256 ⇥ 256) and cropped at 227 ⇥ 227. For the data
augmentation, we used random crop with random horizon-
tal mirroring for training and a single center crop for test-
ing. In Npairs embedding [29], they take multiple random
crops and average the embedding vectors from the cropped

min

⇥2⌦

X

i

2

4
max

S✓Vi
|S|k

F (S;⇥) + ��NMI(S, S
⇤
i )� F (S⇤

i ;⇥)

3

5

+

F : 2

V ! R, submodular

F (S) = �
X

i2V

min

j2S
D⇥ (Xi, Xj)

Algorithm 2: Loss augmented refinement for (⇤)
Input : X 2 Rm⇥d, y⇤ 2 |Y|m, Sinit, �, T
Output : S
Initialize: S = Sinit, t = 0

1 for t < T do
// Perform cluster assignment

2 yPAM = g (S)

// Update each medoids per cluster

3 for k < |Y| do
// Swap the current medoid in

cluster k if it increases the

score.

4 S[k] = argmax

j2{i: yPAM[i]=k}
F
�
X{i: yPAM[i]=k}, {j};⇥

�

5 + �� (g (S \ {S[k]} [ {j}) , y⇤
)

6 end
7 end
8 return S

images during testing. However, in our implementation of
[29], we take a single center crop during testing for fair
comparison with other methods.

The experimental ablation study reported in [30] sug-
gested that the embedding size doesn’t play a crucial role
during training and testing phase so we decided to fix the
embedding size at d = 64 throughout the experiment (In
[30], the authors report the recall@K results with d = 512

and provided the results for d = 64 to us for fair compari-
son). We used RMSprop [33] optimizer with the batch size
m set to 128. For the margin multiplier constant �, we grad-
ually decrease it using exponential decay with the decay rate
set to 0.94.

As briefly mentioned in section 1, the proposed method
does not require the data to be prepared in any rigid paired
format (pairs, triplets, n-pair tuples, etc). Instead we simply
sample m (batch size) examples and labels at random. That
said, the clustering loss becomes trivial if a batch of data
all have the same class labels (perfect clustering merging
everything into one cluster) or if the data all have different
class labels (perfect clustering where each data point forms
their own clusters). In this regard, we guarded against those
pathological cases by ensuring the number of unique classes
(C) in the batch is within a reasonable range. We tried three
different settings C

m = {0.25, 0.50, 0.75} and the choice of
the ratio did not lead to significant changes in the experi-
mental results. For the CUB-200-2011 [37] and Cars196
[18], we set C

m = 0.25. For the Stanford Online Products
[30] dataset, C

m = 0.75 was the only possible choice be-
cause the dataset is extremely fine-grained.

4. Experimental results
Following the experimental protocol in [30, 29], we eval-

uate the clustering and k nearest neighbor retrieval [13] re-
sults on data from previously unseen classes on the CUB-
200-2011 [37], Cars196 [18], and Stanford Online Products
[30] datasets. We compare our method with three current
state of the art methods in deep metric learning: (1) triplet
learning with semi-hard negative mining strategy [25], (2)
lifted structured embedding [30], (3) N-pairs metric loss
[29]. To be comparable with prior work, we `2 normalize
the embedding for the triplet (as prescribed by [25]) and our
method, but not for the lifted structured loss and the N-pairs
loss (as in the implementation sections in [30, 29]).

We used the same train/test split as in [30] for all the
datasets. The CUB200-2011 dataset [37] has 11, 788 im-
ages of 200 bird species; we used the first 100 birds species
for training and the remaining 100 species for testing. The
Cars196 dataset [18] has 16, 185 images of 196 car mod-
els. We used the first 98 classes of cars for training and
the rest for testing. The Stanford online products dataset
[30] has 120, 053 images of 22, 634 products sold online on
eBay.com. We used the first 11, 318 product categories for
training and the remaining 11, 316 categories for testing.

4.1. Quantitative results

The training procedure for all the methods converged at
10k iterations for the CUB200-2011 [37] and at 20k itera-
tions for the Cars196 [18] and the Stanford online products
[30] datasets.

Tables 1, 2, and 3 shows the results of the quantita-
tive comparison between our method and other deep metric
learning methods. We report the NMI score, to measure the
quality of the clustering, as well as k nearest neighbor per-
formance with the Recall@K metric. The tables show that
our proposed method has the state of the art performance
on both the NMI and R@K metrics outperforming all the
previous methods.

NMI R@1 R@2 R@4 R@8

Triplet semihard [25] 55.38 42.59 55.03 66.44 77.23
Lifted struct [30] 56.50 43.57 56.55 68.59 79.63

Npairs [29] 57.24 45.37 58.41 69.51 79.49
Clustering (Ours) 59.23 48.18 61.44 71.83 81.92

Table 1. Clustering and recall performance on CUB-200-2011 [37]
@10k iterations.

4.2. Qualitative results

Figure 4, 5, and 6 visualizes the t-SNE [36] plots
on the embedding vectors from our method on CUB200-

Clustering & Retrieval Experiments

NMI R@1 R@2 R@4 R@8

Triplet semihard (CVPR15) 55.38 42.59 55.03 66.44 77.23

Lifted struct (CVPR16) 56.50 43.57 56.55 68.59 79.63

Npairs (NIPS16) 57.24 45.37 58.41 69.51 79.49

Clustering (Ours) 59.23 48.18 61.44 71.83 81.92

NMI R@1 R@2 R@4 R@8

Triplet semihard (CVPR15) 53.35 51.54 63.78 73.52 82.41

Lifted struct (CVPR16) 56.88 52.98 65.70 76.01 84.27

Npairs (NIPS16) 57.79 53.90 66.76 77.75 86.35

Clustering (Ours) 59.04 58.11 70.64 80.27 87.81

NMI R@1 R@10 R@100

Triplet semihard (CVPR15) 89.46 66.67 82.39 91.85

Lifted struct (CVPR16) 88.65 62.46 80.81 91.93

Npairs (NIPS16) 89.37 66.41 83.24 93.00

Clustering (Ours) 89.48 67.02 83.65 93.23

CUB200

Cars196

Stanford
Products

Summary

• State of the art results on clustering and retrieval measured in 
NMI and recall@K evaluation metrics.

• Structural prediction framework for directly optimizing the 
clustering metric (NMI) with a global view of the embedding space

• Learn to cluster a batch of data, and makes use of the evaluation 
metric such as normalized mutual information during training. 

• Most deep metric learning methods enforce a local loss function 
to pull similar examples to each other and push dissimilar 
examples farther apart in an embedding space.  

  
• However, these approaches suffer from the discrepancy between 

the training objective, and the actual evaluation metrics used in 
tasks such as clustering and retrieval.

tSNE on Stanford Online Products

• Enforce the facility location score given the ground truth clustering 
assignment to be “higher” than the score given any other clustering 
assignments “at least” by the structured margin delta.

• First approximately optimize the loss augmented inference via greedy 
maximization. This procedure incrementally selects cluster medoids 
which provide the best marginal benefit to the loss augmented score.

• Then, refine the greedy solution by looping over each clusters and 
swapping the cluster medoid with any other cluster elements which 
increases the score. 

Contact
hyunsong@google.com

Recent related works
• [Schroff et al.] FaceNet: a unified embedding for face recognition and 

clustering. In CVPR 2015 
• [Song et al.] Deep metric learning via lifted structured feature embedding.  
• In CVPR 2016 
• [Sohn et al.] Improved deep metric learning with multi-class n-pair loss 

objective. In NIPS 2016


