

Indoor Scene Parsing with Instance Segmentation, Semantic Labeling and Support Relationship Inference

IEEE 2017 Conference on Computer Vision and Pattern Recognition

Wei Zhuo ^{1,3}, Mathieu Salzmann ², Xuming He ^{1,3}, Miaomiao Liu ^{1,3} ¹ Australian National University, ² EPFL, ³ Data61-CSIRO

Objective:

Analyze a scene by jointly estimating its instances, their semantic labels and support relationships between instances (e.g., the floor supports the desk from below).

Input:

Output:

Our Semantic

Instance&Support

Motivation:

Strong connections exist among the above mentioned tasks

- good regions respect semantic labels;
- > support relationships can only be defined on meaningful regions;
- > support relationships strongly depend on semantics.

Contribution:

Compared to previous work [2,3], we

- jointly train instance segmentation with support relationships;
- perform prediction from a single RGB image.

Overview:

Given a hierarchical segmentation, we formulate the joint learning problem as selecting the best set of regions. We seek regions that have

- a high probability of being instances;
- homogenous semantic labels;
- a high probability of having valid support relationships.

Reference:

- [1] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015.
- [2] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor segmentation and support inference from rgbd images. In ECCV, 2012.
- [3] N. Silberman, D. Sontag, and R. Fergus. Instance segmentation of indoor scenes using a coverage loss. In ECCV, 2014.
- [4] D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction from a single image using a multi-scale deep network. In NIPS, 2014.
- [5] K.He,X.Zhang,S.Ren,andJ.Sun.Spatial pyramid pooling in deep convolutional networks for visual recognition. In ECCV, 2014.

Models:

We formulate our problem as inference in a CRF, whose energy is

$$E(A, M, S) = \sum_{i=1}^{R} \phi_a(a_i) + \sum_{i=1}^{R} \phi_{ma}(M_i, a_i) + \phi_{tree}(A) + \sum_{i=1}^{R} \sum_{j=0}^{R} \phi_s(S_{ij}) + \sum_{i=1}^{R} \sum_{j=0}^{R} \phi_{sa}(S_{ij}, a_i, a_j)$$

with variables

- A: binary variables indicating whether a region is selected;
- M: semantic labels defining the class to which a region belongs, for K classes;
- S_{ij} : variables defining the type of support that region j provides to region i;

the support types include {no support, support from below, support from behind}; and potentials

- ϕ_a , ϕ_s : unaries for region selection and support types;
- ϕ_{ma} : probability of predicting a particular semantic label for a region if it is active;
- ϕ_{sa} : dependencies between the support variables and the region selection ones;
- ϕ_{tree} : enforces that only one region is selected in every path from the root of the hierarchy to a leaf.

All potentials rely on deep features [1,4,5] and hand-craft ones [2].

Learning with Structural SVM:

Let $(x^{(n)}, y^{(n)})$ be a set of pairs of images and labels, with $y^{(n)}$ is ground truth labels. Let $\phi(x,y) = [\phi_a, \phi_{ma}, \phi_s, \phi_{sa}]$. We express training as

$$\min_{w,\epsilon \leq 0} \frac{1}{2} w^T w + \frac{\lambda}{N} \sum_{n=0}^{N} \epsilon_n ,$$

s.t.
$$w^T [\phi(x^{(n)}, y^{(n)}) - \phi(x^{(n)}, y)] \ge \Delta(y^n, y) - \epsilon_n, \forall y$$

where $\Delta(y^n, y)$ returns the loss of an arbitrary prediction y compared to the best configuration.

$$\Delta(y^{n}, y) = \frac{w_{sup}^{ls}}{Q} \sum_{i=1}^{R} \sum_{j=0}^{R} 1[S_{ij} \neq S_{ij}^{*}] + w_{r}^{ls} \frac{1}{L} \sum_{g \in G} L_{r_{g}}(min_{i \in A}(n)IoU(r_{g} - r_{i}^{(n)})) - w_{r}^{ls} \frac{1}{L} \sum_{g \in G} L_{r_{g}}(min_{i \in A}IoU(r_{g} - r_{i}))$$

where $r_i^{(n)}$ is the oracle set of regions, which best match ground truth in our hierarchy, S_{ij}^* is the ground truth support label.

Inference:

For both training and test, we do exact inference by Integer Linear Programming. To speed up inference, we trained

- > an IoU regressor based on a shallow neural network to reduce the number of regions;
- > a binary SVM classifier achieving a high recall on pairs of positive support types to reduce the number of region pairs.

Evaluation

We evaluate quantitatively on the NYUv2 depth dataset. Correct support predictions are shows as white lines, incorrect ones in black.

Ablation study

Model	W.Cov	Sem Avg Acc	Sem Per-Cls Acc	Support Precision	Support Recall
Basic	58.9	-	-	-	-
SC	-	-	-	44.8	39.0
Ours-NS	59.3	73.0	72.0	-	-
Ours-ND	59.3	73.3	72.2	47.0	41.9
Ours	59.4	73.2	72.1	47.6	43.1
Ours(GtSem)	60.1	-	-	48.2	45.0

Comparison to baselines

Model	Orable W.Cov	W.Cov	Sem Avg Acc	Sem Per-Cls Acc	Support Precision	Support Recall
Basic	68.8	61.1	-	-	-	-
SC	-	-	1	-	48.3	37.9
Ours-NS	68.8	62.8	74.8	73.7	1	-
Ours	68.8	62.7	75.3	74.3	49.5	38.6
[3]	70.6	62.5	-	-	-	-
[2]	-	-	-	-	54.5	-

Conclusion:

Our experiments demonstrate that jointly reasoning about the three tasks is in general beneficial, particularly for support relationships.