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Abstract

» We propose a new multi-bit quantization method for both
weights and activations. Our scheme is applicable for any
number of bits per weight / activation.

» Our scheme facilitates automated quantization of the entire
neural network. It does not require any modifications to the
network, thus It can be easily iIntegrated Into conventional
training algorithms for neural network.

» We demonstrate the effectiveness of our method based on
various practical neural network designs including i1mage
classification, object detection, and language modeling.
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» Near-zero values dominate the total frequency of values, but
their impact on the output Is small. It Is desirable to assign fewer
guantization levels.

» Large values have significant impact on the quality of output,
but they are infrequent. It is also desirable to assign a small
number of levels to them.

» Intermediate values constitute a relatively large number of
population with noticeable impacts on the output quality. We
must assign more levels to those values than In conventional
guantization methods.

Motivation & ldea

» Quantization levels should be assigned judiciously by taking into
account the values and frequencies of weight and activation.

» We figured out that that the above conditions can be
accomplished by maximizing weighted entropy of quantization.

Weighted-Entropy-based Quantization

Algorithm 1 Weight Quantization

S — —ZnInPnloan, I: function OPTSEARCH(N,w)

2: fork=0toN,,—1do

3: ik — ﬁ(wk)
where 4 s<sort([io, L IN,—1])
5 Cop- o < initial cluster boundary
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fork=0toN—1do
b Xt 'sli)/ (cxr — )
ri < £ (k)
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18: function QUANTIZE(w,, [ro : ry—1], [bo : bN])
19: return ry for k s.t. by < w, < by

i(n,m) = W(Zn,m) (importance mapping).

Cluster boundaries (N = 4)
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]  N: The number of levels

* N,.: The number of weights

* w,: Value of n-th weight

* i,: Importance of n-th weight
B P y—— oo " o2 o3 4 * f;: Importance mappllng function
Value of weight * ¢;: Cluster boundary index

Choose boundaries which maximize S * §: Overall weighted entropy
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Image Classifier Quantization
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» \Weights are clustered while maximizing weighted entropy

» Activations are under logarithm-based quantization. Their hyper-
parameters, e.g. log base and offset, are obtained by maximizing
welighted entropy.

Integration of quantization into training

For each mini-batch,

» Forward pass to calculate P,, for activation

» Activation guantization to adjust base and offset for LogQuant
to maximize S (weighted entropy for activation)

» Backward pass and weight (32b) update

» Weight quantization to maximize weighted entropy
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Visualization of Feature Maps
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» We proposed a novel weight / activation guantization method

based on the concept of weighted entropy.

» The key benefits of our approach are as follows.

* Flexible multi-bit quantization, which allows us to optimize
the neural network design under the tight accuracy loss
constraint.

« Automated quantization, which does not require modifications
to the input networks.




