

1. Problem & Motivation

◆ Problem

- Face Recognition with Image Sets

- Challenges: Large intra-class variations

- Existing solutions:

◆ Motivation:

- Combine the two separated stages into a whole framework
- Image feature learning that facilitates image set classification

- Image feature learning: Deep learning networks, e.g., CNN

$$X_i \mapsto h_i = \phi_\theta(X_i)$$

- Image set modeling: Set covariance matrices

$$C_i = \hat{h}_i^T \hat{h}_i, \text{ where } \hat{h}_i \text{ is the centered } h_i$$

- Objective: Learn a feature learning network to project the images into a target feature space where set covariance matrices have maximum discriminative ability.

2. Our method (DCRL)

◆ Basic Idea

- Formulate the discrimination of set covariance by an objective function
- Solve the feature learning network by optimizing the objective function

◆ Graph Embedding Scheme

$$\Theta = \operatorname{argmin}_\Theta \sum_{i,j} A_{ij} \text{LEM}^2(C_i, C_j)$$

- Encode the relationship of covariance matrices with an adjacency graph

$$A_{ij} = \begin{cases} d_{ij} & \text{if } X_i \in N_w(X_j) \text{ or } X_j \in N_w(X_i) \\ -d_{ij}, & \text{if } X_i \in N_b(X_j) \text{ or } X_j \in N_b(X_i) \\ 0 & \text{otherwise} \end{cases}$$

$$d_{ij} = \exp(-\text{LEM}^2(C_i, C_j)/\sigma^2)$$

$$\text{LEM}(C_i, C_j) = \|\log(C_i) - \log(C_j)\|_F$$

◆ Softmax Regression Scheme

$$\Theta = \operatorname{argmin}_\Theta \sum_{i=1}^n f_{\text{softmax}}(v_i)$$

- Log-covariance vector:

$$v_i = \text{vec}(\log(C_i))$$

- Train a Softmax classifier for covariance matrices on a flat tangent space

3. Experiments

◆ Three challenging databases

- YTC [CVPR'2008]

- 47 subjects, 1,910 videos

- YTF [CVPR'2011]

- 1,595 subjects, 3,425 videos

- PaSC [BTAS'2013]

- 265 subjects, 2,802 videos

◆ Results:

- Comparisons on YTC

- Comparisons on PaSC

◆ Conclusion

- Set covariance matrix model outperforms other set models promisingly
 - the capability of covariance matrix to characterize image set structure
- Our DCRL shows better performance than other set covariance methods
 - the superiority of the well learned image representations
- Our DCRL yields better results than deep methods ADNT and MMDML
 - the explicit use of discriminative information and set covariance model

