

Goals and Contributions

Instance-level semantic segmentation (IS)

- Key component of scene understanding pipelines.
- Jointly detect, segment and classify all individual object instances.
- Provides detailed information about the location, shape and number of individual objects.

Input/ground-truth Traditional methods Our approach

Existing IS methods

- Existing methods typically follow a detect-thensegment approach [1, 3, 7-9].
- They limit the mask prediction to bounding-boxes and are thus sensitive to the boxes quality.

Our contribution: Boundary-Aware IS

- Predict masks beyond the scope of bounding boxes.
- Novel segment representation based on the distance transform of object masks.
- Fully-differential object mask network (OMN) with residual-deconvolutional architecture.
- End-to-end learning using Boundary-aware Instance Segmentation Network (BAIS) based on MNC [5].

Boundary-Aware Instance Segmentation

Zeeshan Hayder^{1,2}, Xuming He^{2,1}, Mathieu Salzmann³ 1 Australian National University, 2 Data 61 / CSIRO, Australia, 3 CVLab, EPFL, Switzerland

{zeeshan.hayder, xuming.he}@anu.edu.au, mathieu.salzmann@epfl.ch

Mask Representation

- Each bounding-box depicts a partially-observed object instance.
- Bounding-boxes are warped to a fixed size to encode a scale invariant shape representation.
- At each inside pixel p, ground-truth mask represents minimum distance to the true object boundary Q.
- Truncate the distance transform to obtain a restricted range of values $[0, \cdots, R]$

$$D(p) = \min\left(\min_{\forall q \in Q} \left\lceil d(p,q) \right\rceil, R\right) ,$$

• One-hot encoding by quantizing distance map D(p)into K-dimensional binary vector b(p)

$$D(p) = \sum_{n=1}^{K} r_n \cdot b_n(p), \quad \sum_{n=1}^{K} b_n(p) = 1,$$

• Efficient decoding by taking the union of all the disks T(p,r) of radius r at pixel p

$$M = \bigcup_{n=1}^{K} \bigcup_{p} T(p, r_n) = \bigcup_{n=1}^{K} T(\cdot, r_n) * B_n$$

Residual-deconvolutional Subnet for Decoding

Instance Feature Map after ROI-Warping $\mathbf{b_2}$ $\mathbf{b_0}$ $\mathbf{b_1}$ (Deconv' (Deconv Deconv \mathbf{ks} : 5 $\mathbf{ks}:\mathbf{1}$ \mathbf{ks} : 3 $\mathbf{p}:\mathbf{2}$ $\mathbf{p}:\mathbf{1}$ $\mathbf{p}:\mathbf{0}$ s: K $\mathbf{s}: \mathbf{K}$ $\mathbf{s} : \mathbf{K}$ Wo

Multi-stage Multi-task Learning

End-to-end learning via OMN & Multitask Network Cascade [5]

Qualitative Results

[1] B. Hai
[2] X. Lia
[3] B. Hai
[4] J. Dai
[5] J. Dai
[6] J. Van
[7] M. Co
[8] J. Uhr
[9] M. Re
[10] A. K
[11] M. B

Quantitative Evaluation

• Pascal 2012 val dataset [12]

VOC 2012 (val)	mAP (0.5)	mAP (0.7)	time/img (s)
SDS[1]	49.7	25.3	48
PFN[2]	58.7	42.5	~ 1
Hypercolumn [3]	60.0	40.4	>80
InstanceFCN $[4]$	61.5	43.0	1.50
MNC [5]	63.5	41.5	0.36
MNC-new [5]	65.01	46.23	0.42
AIS - insideBBox (ours)	64.97	44.58	0.75
BAIS - full (ours)	65.69	48.30	0.78

• Cityscapes dataset [7]

Cityscapes (test)	AP	AP (50%)	AP (100m)	AP (50m)
ILSVDC [6]	2.3	3.7	3.9	4.9
MCG+RCNN [7]	4.6	12.9	7.7	10.3
PEIS $[8]$	8.9	21.1	15.3	16.7
Rec A ttend [9]	9.5	18.9	16.8	20.9
InstanceCut [10]	13.0	27.9	22.1	26.1
BAIS - full (ours)	17.4	36.7	29.3	34.0
DWT + PSPNet [11]	19.4	35.3	31.4	36.8

Failure Cases

riharan, et al. Simultaneous Detection and Segmentation. In ECCV, 2014.

ang, et al. Proposal-free Network for Instance-level Object Segmentation. In CoRR, 2015.

riharan, et al. Hypercolumns for object segmentation and fine-grained localization. In CVPR, 2015. i, et al. Instance-sensitive Fully Convolutional Networks. ECCV, 2016.

, et al. Instance-aware Semantic Segmentation via Multi-task Network Cascades. In CVPR, 2016. n, et al. Instance-level Segmentation of Vehicles using Deep Contours. In ACCV, 2016.

ordts, et al. The Cityscapes Dataset for Semantic Urban Scene Understanding. In CVPR, 2016.

rig, et al. Pixel-Level Encoding and Depth Layering for Instance Semantic Labeling. In GCPR, 2016. en, et al. End-to-End Instance Segmentation and Counting with Recurrent Attention. In CVPR, 2017. Kirillov, et al. Instance-Cut: from Edges to Instances with Multicut. In CVPR, 2017.

Bai, et al. Deep Watershed Transform for Instance Segmentation. In CVPR, 2017.

[12] M. Everingham, et al. The Pascal Visual Object Classes (VOC) Challenge. In IJCV, 2010.