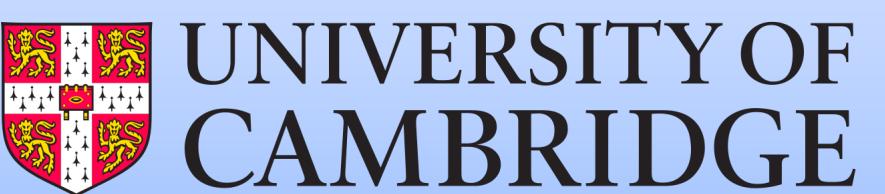


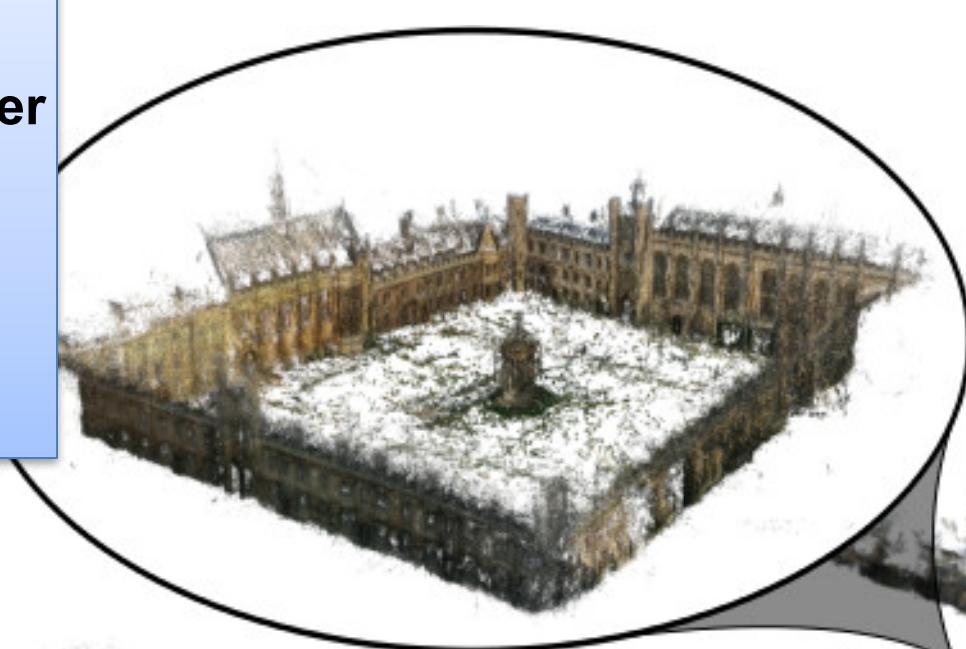
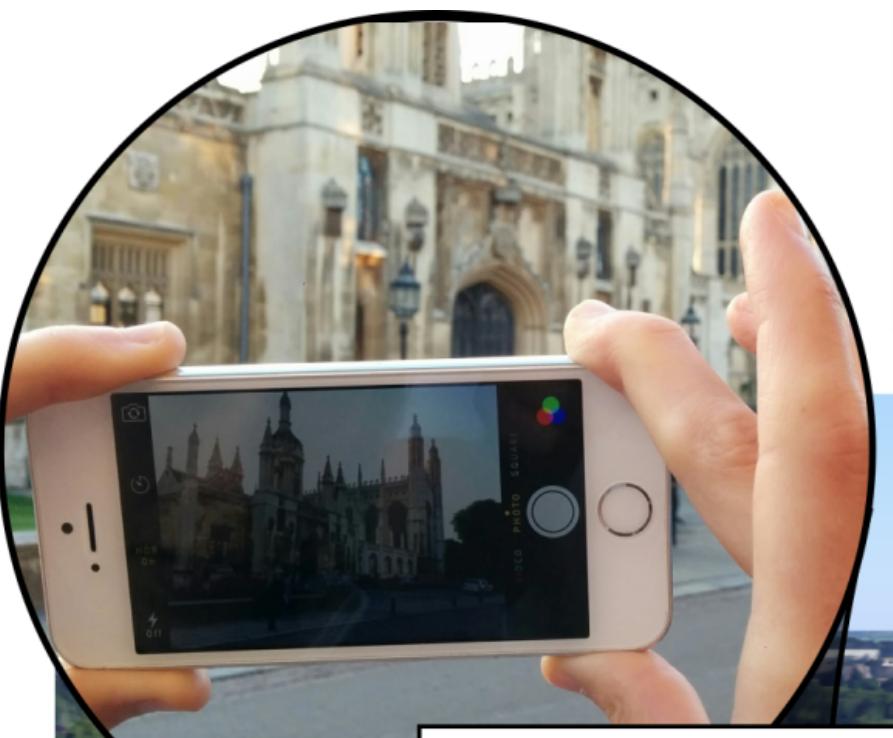
Geometric Loss Functions for Camera Pose Regression with Deep Learning

Alex Kendall and Roberto Cipolla, University of Cambridge

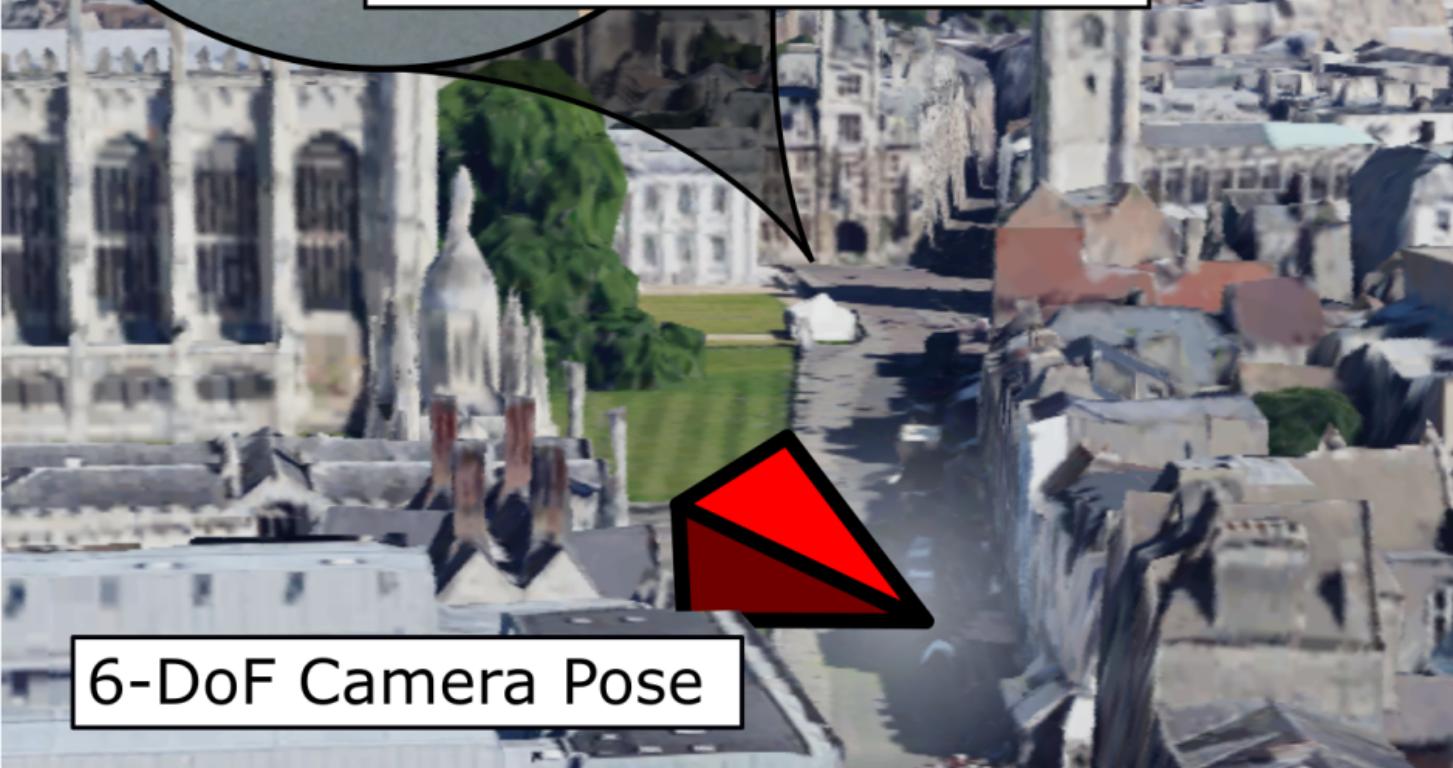


Webdemo: <http://mi.eng.cam.ac.uk/projects/relocalisation>

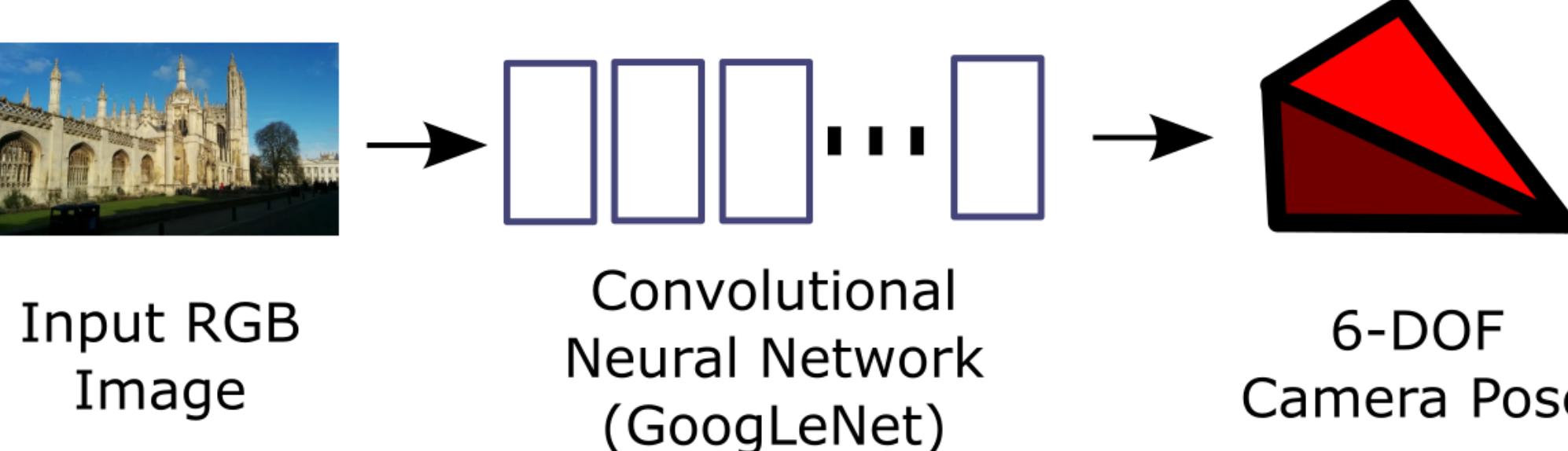
IEEE 2017 Conference on Computer Vision and Pattern Recognition



Single RGB Input Image



6-DOF Camera Pose



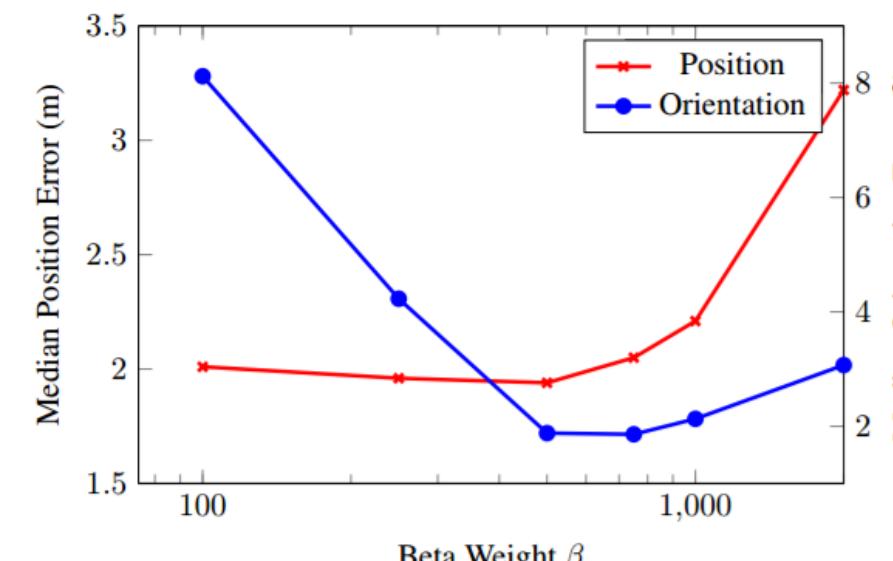
PoseNet

- ✓ Robust to lighting, weather, dynamic objects – learns features based on shape, appearance and global context
- ✓ Fast inference, <2ms per image on Titan GPU
- ✓ Scale not dependent on number of training images
- ✓ Trained with a naïve end-to-end loss function to regress camera position, \mathbf{x} , and orientation, \mathbf{q} ;

$$\text{loss} = \|\mathbf{x} - \hat{\mathbf{x}}\|_2 + \beta \left\| \mathbf{q} - \frac{\hat{\mathbf{q}}}{\|\hat{\mathbf{q}}\|} \right\|_2$$

✗ Relocalization accuracy of 2m, 5° over scene of 50,000m²... we can do better?

✗ How do we weight position, \mathbf{q} , and orientation, \mathbf{x} , losses?



The Kidnapped Robot Problem

Relocalise within a pre-explored environment.

PoseNet [1] learns a mapping from a single image to 6-DOF camera pose

Geometric Loss Function

- Use reprojection function, π , and train on reprojection of 3D geometry in 2D image space
- Using ideas of bundle adjustment as a differentiable training loss
- No calibration, we can use arbitrary camera intrinsics

$$\text{loss} = \frac{1}{|\mathcal{G}'|} \sum_{g_i \in \mathcal{G}'} \|\pi(\mathbf{x}, \mathbf{q}, \mathbf{g}_i) - \pi(\hat{\mathbf{x}}, \hat{\mathbf{q}}, \mathbf{g}_i)\|_1$$

What if we don't have geometry?

- What can we do if we don't have 3D geometry, e.g. SfM model, RGB-D data
- We can use task-dependent (homoscedastic) uncertainty to weight position and orientation

$$\text{loss} = \frac{\|\mathbf{x} - \hat{\mathbf{x}}\|_2}{\sigma_x^2} + \log \sigma_x^2 + \frac{\|\mathbf{q} - \hat{\mathbf{q}}\|_2}{\sigma_q^2} + \log \sigma_q^2$$

Performance

Cambridge Landmarks, King's College			Dubrovnik 6K			
Loss function	Median Error x[m]	Accuracy q[°]	Median Error x[m]	Accuracy q[°]	< 2m, 5°	
Linear sum, $\beta = 500$	1.52	1.19	65%	13.1	4.68	30.1%
Learn weighting with task uncertainty	0.99	1.06	85.3%	9.88	4.73	41.7%
Reprojection loss	does not converge					
Learn weighting pretrain + Reprojection loss	0.88	1.04	90.3%	7.90	4.40	48.6%
SIFT + SfM Geometry	0.42	0.55	-	1.1	-	-

Datasets

- Cambridge landmarks, 100 x 500m street scenes, Kendall et al.

- Seven Scenes, 4 x 3m indoor scenes, Shotton et al.

- Dubrovnik Dataset, 1500 x 1500 m small town, Li et al.

Future Work:

- City-scale metric localisation
- Fine grained localisation – achieve accuracy which enables augmented reality
- Temporal localisation and end-to-end learning for SLAM

References:

- [1] Alex Kendall, Matthew Grimes and Roberto Cipolla. PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization. ICCV, 2015.
- [2] Alex Kendall and Roberto Cipolla. Modelling Uncertainty in Deep Learning for Camera Relocalization ICRA, 2016.
- [3] Alex Kendall and Roberto Cipolla. Geometric loss functions for camera pose regression with deep learning. CVPR, 2017.

CVPR Tutorial

Large-Scale Visual Place Recognition and Image-Based Localization
Wednesday, July 26th, 2017 - morning (half-day)