AAAAAAAAAA

5 B UNIVERSITY OF . . o
4P CAMBRIDGE @ Webdemo: http://mi.eng.cam.ac.uk/projects/relocalisation

Geometric Loss Functions for Camera Pose Regression with Deep Learning ...~ .
Alex Kendall and Roberto Cipolla, University of Cambridge Vision and Pattern Recognition

@alexgkendall AT .

- i A
july21-269 01 7

!
)
i
!
- |
> :
/) F ol
i Ny N
.
L T
"

The Kidnapped Geometric Loss Function
Robot Problem > Use reprojection function, m, and train on reprojection of 3D
Relocalise within a geometry in 2D image space
pre-explored > Using ideas of bundle adjustment as a differentiable training loss
environment. > No calibration, we can use arbitrary camera intrinsics Y
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i - o~ A ambridge landmarks, X m street scenes, Kendall et al.
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—IL— — > We can use task-dependent (homoscedastic) uncertainty to weight » Dubrovnik Dataset, 151 500 m small town, Li et al.
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v" Robust to lighting, weather, dynamic objects — learns features * 1 Futgre Work: | o
based on shape, appearance and global context Performance » City-scale metric localisation
v Fast inference, <2ms per image on Titan GPU » Fine grained localisation — achieve accuracy which enables
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_ | 3} _ : : » Temporal localisation and end-to-end learning for SLAM
v Trained with a naive end-to-end loss function to Median Error Accuracy |Median Error Accuracy
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