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Introduction Brain MRI Super-Resolution (SR)
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Simultaneous Super-Resolution and Cross-Modality Synthesis (SRCMS)
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Mapping W » | beese We perform SRCMS on |IXI] and NAMIC datasets involving six groups of experiments: (1) LR PD-w -> HR T2-w; (2) vice
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| » i’- >» % > Convolution versa; (3) LR PD-w with pre-processing -> HR T2-w; (4) vice versa; (5) LR T2-w -> HR T | -w; (6) vice versa. Cases (1-4)
'! \ /ﬁ \ are conducted on the IXI| dataset while cases (5-6) are evaluated on the NAMI|C dataset.VVe compare our results
- Lo ~ ~ with state-of-the-art synthesis methods including V-S [7],V-US [7] and MIMECS [8].
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Figure I. Overview of the proposed method

Weakly-Supervised Joint Convolutional Sparse Coding
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