

Simultaneous Super-Resolution and Cross-Modality Synthesis of 3D Medical Images using Weakly-Supervised Joint Convolutional Sparse Coding

CISTIB

Center for Computational Imaging & Simulation Technologies in Biomedicine

Yawen Huang¹, Ling Shao², Alejandro F. Frangi¹

¹Center for Computational Imaging & Simulation Technologies in Biomedicine (CISTIB), Department of Electronic and Electrical Engineering, University of Sheffield, UK

²School of Computing Sciences, University of East Anglia, UK

Introduction

Motivation

- The acquisition of a complete multi-modal set of high-resolution images faces various constraints in practice.
- High-resolution (HR) 3D medical imaging usually requires long breath-hold and repetition times that are unfeasible in clinical routine.

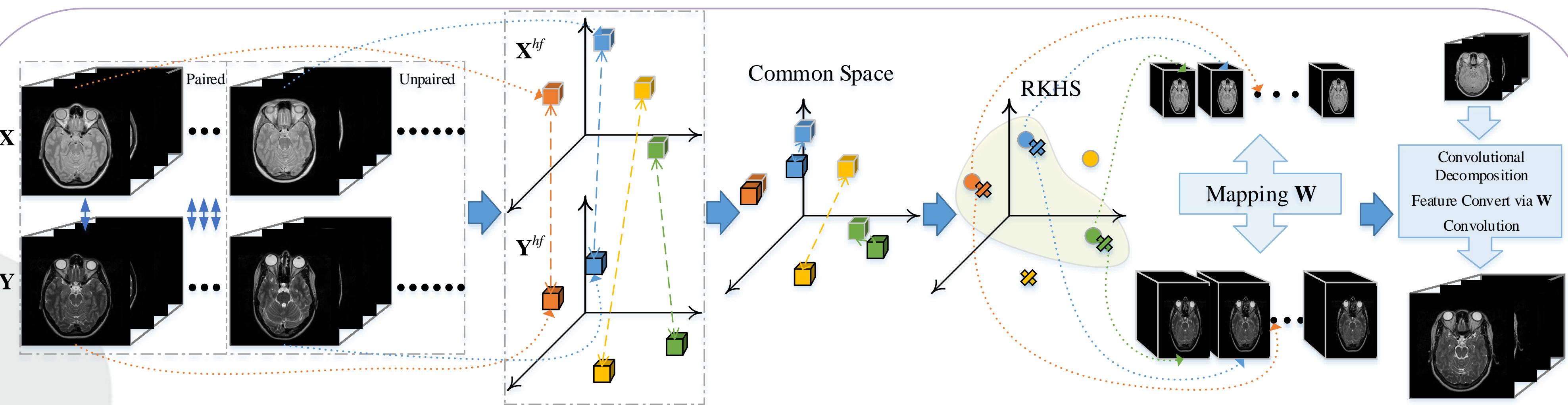
Challenge

- The resolution limits of the acquired image data.
- Variations in image representations across modalities.
- Reveal the relationship between different representations of the underlying image information
- Weakly-supervised setting.

Our Goal

- Generate HR data from the desired target modality from the given low-resolution modality data.

Method



Weakly-Supervised Joint Convolutional Sparse Coding

Objective Function:

$$\arg \min_{\mathbf{F}^x, \mathbf{F}^y, \mathbf{Z}^x, \mathbf{Z}^y, \mathbf{W}} \frac{1}{2} \left\| \mathbf{X} - \sum_{k=1}^K \mathbf{F}_k^x * \mathbf{Z}_k^x \right\|_F^2 + \frac{1}{2} \left\| \mathbf{Y} - \sum_{k=1}^K \mathbf{F}_k^y * \mathbf{Z}_k^y \right\|_F^2 + \lambda \left(\sum_{k=1}^K \|\mathbf{Z}_k^x\|_1 + \sum_{k=1}^K \|\mathbf{Z}_k^y\|_1 \right) + \|\mathbf{X}^{hf} - \mathbf{A} \mathbf{Y}^{hf}\|_2^2$$

\mathbf{X} : LR source image \mathbf{Y} : HR target image \mathbf{X}^{hf} : HF features of \mathbf{X} \mathbf{Y}^{hf} : HF features of \mathbf{Y}

\mathbf{F} : Filters

\mathbf{Z} : Feature maps

\mathbf{A} : Transformation matrix

\mathbf{W} : Mapping function

Synthesis: $\mathbf{Y}^t = \sum_{k=1}^K \mathbf{F}_k^y \mathbf{W} \mathbf{Z}_k^t = \sum_{k=1}^K \mathbf{F}_k^y \hat{\mathbf{Z}}_k^t$.

References

- [1] Yang, J., Wright, T. S., Huang, Y. and Ma. Image super-resolution via sparse representation. *IEEE Transactions on Image Processing*, 19 (11), pp. 2861–2873. 2010.
- [2] R. Zeyde, M. Elad, and M. Protter. On single image scale-up using sparse-representations. In *International Conference on Curves and Surfaces*, pp. 711–730. Springer, 2010.
- [3] R. Timofte, V. De Smet, and L. Van Gool. Anchored neighbourhood regression for fast example-based super-resolution. In *Proceedings of the IEEE International Conference on Computer Vision*, pp. 1920–1927. 2013.
- [4] H. Chang, D.-Y. Yeung, and Y. Xiong. Super-resolution through neighbor embedding. In *Computer Vision and Pattern Recognition. In Proceedings of the IEEE International Conference on Computer Vision*, pp. 1823–1831. 2015.
- [5] R. Timofte, V. De Smet, and L. Van Gool. A+: Adjusted anchored neighborhood regression for fast super-resolution. In *Asian Conference on Computer Vision*, pp. 111–126. Springer, 2014.
- [6] S. Gu, W. Zuo, Q. Xie, D. Meng, X. Feng, and L. Zhang. Convolutional sparse coding for image super-resolution. In *Proceedings of the IEEE International Conference on Computer Vision*, pp. 1823–1831. 2015.
- [7] S. Roy, A. Carass, and J. L. Prince. Magnetic resonance image example-based contrast synthesis. *IEEE Transactions on Medical Imaging*, 32(12), pp. 2348–2363. 2013.
- [8] R. Vemulapalli, H. Van Nguyen, and S. Kevin Zhou. Unsupervised cross-modal synthesis of subject-specific scans. In *Proceedings of the IEEE International Conference on Computer Vision*, pp. 630–638. 2015.

Brain MRI Super-Resolution (SR)

We focus on the PD-w subjects of the IXI dataset to compare the proposed WEEENIE model with several state-of-the-art SR approaches: ScSR [1], Zeyde's [2], ANR [3], NE+LLE [4], A+ [5] and CSC-SR [6].

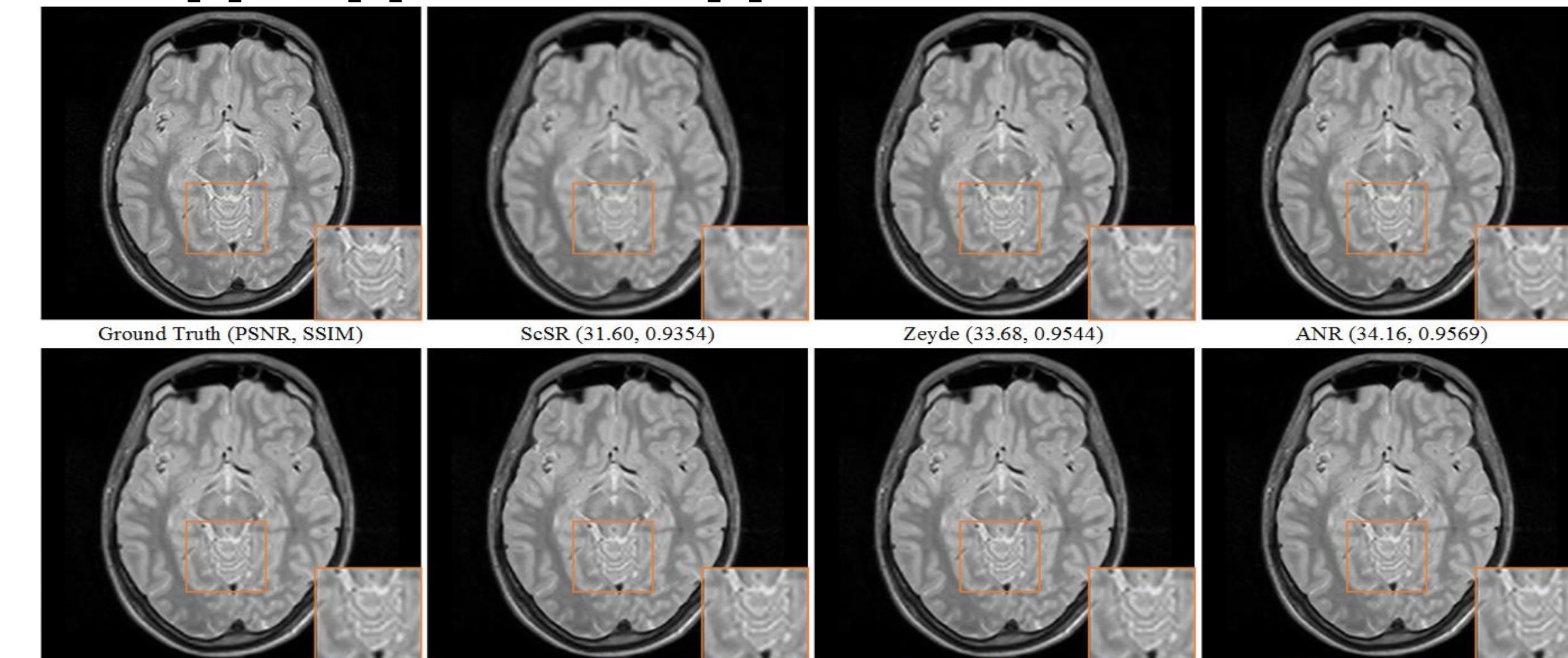


Figure 2.
Example SR
results and
corresponding
PSNRs, SSIMs

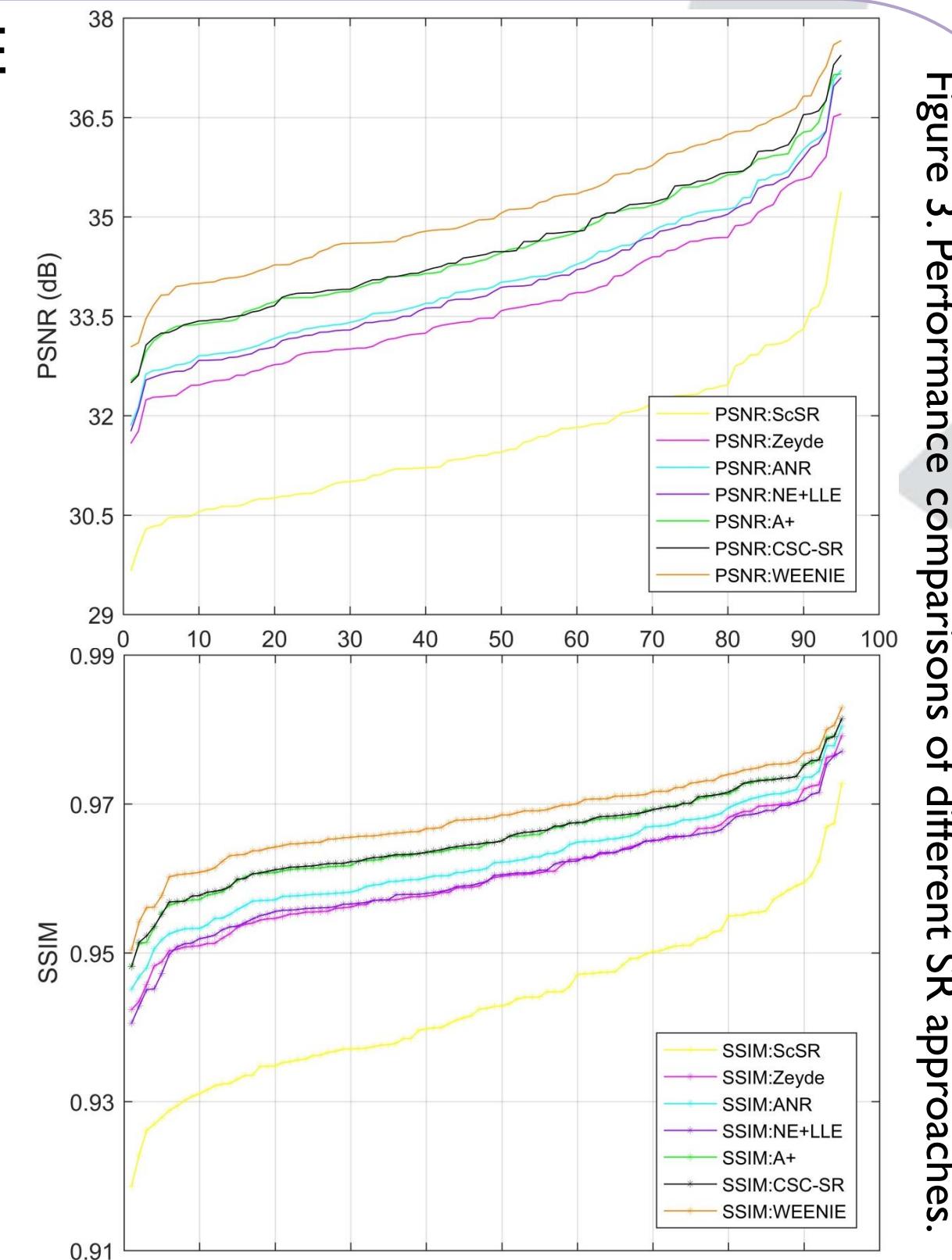


Table I. Quantitative evaluation: WEEENIE vs. other SR methods on IXI dataset.

Simultaneous Super-Resolution and Cross-Modality Synthesis (SRCMS)

We perform SRCMS on IXI and NAMIC datasets involving six groups of experiments: (1) LR PD-w \rightarrow HR T2-w; (2) vice versa; (3) LR PD-w with pre-processing \rightarrow HR T2-w; (4) vice versa; (5) LR T2-w \rightarrow HR T1-w; (6) vice versa. Cases (1-4) are conducted on the IXI dataset while cases (5-6) are evaluated on the NAMIC dataset. We compare our results with state-of-the-art synthesis methods including V-S [7], V-US [7] and MIMICS [8].

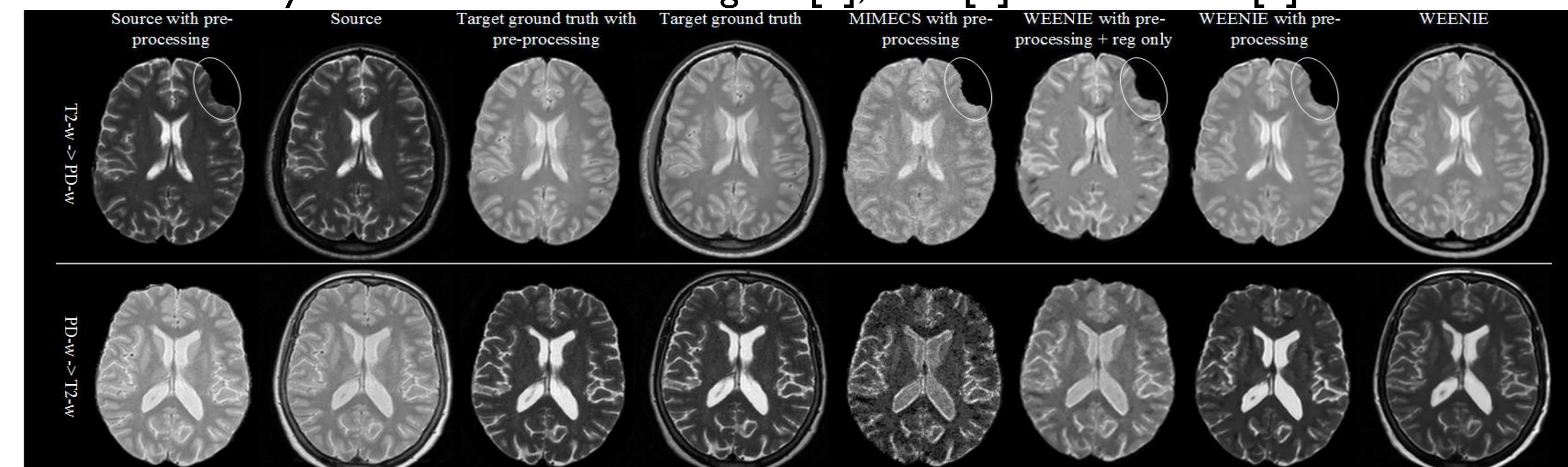


Figure 4. Visual
comparison of
synthesized results
using different
methods.

Metric(avg.)	IXI			NAMIC				
	PD- \rightarrow T2	T2- \rightarrow PD	PD- \rightarrow T2+PRE	T2- \rightarrow PD+PRE	Metric(avg.)	T1- \rightarrow T2	T2- \rightarrow T1	
PSNR(dB)	37.77	31.77	30.60	30.93	33.43	29.85	30.29	31.00
SSIM	0.8634	0.8575	0.7944	0.8004	0.8552	0.7503	0.7612	0.8595

Table 2. Quantitative evaluation: WEEENIE vs. other synthesis methods on IXI dataset. Table 3. Quantitative evaluation: WEEENIE vs. other synthesis methods on NAMIC dataset.

[1] Yang, J., Wright, T. S., Huang, Y. and Ma. Image super-resolution via sparse representation. *IEEE Transactions on Image Processing*, 19 (11), pp. 2861–2873. 2010.

[2] R. Zeyde, M. Elad, and M. Protter. On single image scale-up using sparse-representations. In *International Conference on Curves and Surfaces*, pp. 711–730. Springer, 2010.

[3] R. Timofte, V. De Smet, and L. Van Gool. Anchored neighbourhood regression for fast example-based super-resolution. In *Proceedings of the IEEE International Conference on Computer Vision*, pp. 1920–1927. 2013.

[4] H. Chang, D.-Y. Yeung, and Y. Xiong. Super-resolution through neighbor embedding. In *Computer Vision and Pattern Recognition. In Proceedings of the IEEE International Conference on Computer Vision*, pp. 1823–1831. 2015.

[5] R. Timofte, V. De Smet, and L. Van Gool. A+: Adjusted anchored neighborhood regression for fast super-resolution. In *Asian Conference on Computer Vision*, pp. 111–126. Springer, 2014.

[6] S. Gu, W. Zuo, Q. Xie, D. Meng, X. Feng, and L. Zhang. Convolutional sparse coding for image super-resolution. In *Proceedings of the IEEE International Conference on Computer Vision*, pp. 1823–1831. 2015.

[7] S. Roy, A. Carass, and J. L. Prince. Magnetic resonance image example-based contrast synthesis. *IEEE Transactions on Medical Imaging*, 32(12), pp. 2348–2363. 2013.

[8] R. Vemulapalli, H. Van Nguyen, and S. Kevin Zhou. Unsupervised cross-modal synthesis of subject-specific scans. In *Proceedings of the IEEE International Conference on Computer Vision*, pp. 630–638. 2015.