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 Introduction 

Motivation 

 The acquisition of a complete multi-modal set of high-resolution images faces various constraints in practice. 

 High-resolution (HR) 3D medical imaging usually requires long breath-hold and repetition times that are 

unfeasible in clinical routine. 
 

Challenge 

 The resolution limits of the acquired image data. 

 Variations in image representations across modalities. 

 Reveal the relationship between different representations of the underlying image information 

 Weakly-supervised setting. 
 

Our Goal 

 Generate HR data from the desired target modality from the given low-resolution modality data. 
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Figure 1. Overview of the proposed method 

Table 2. Quantitative evaluation: WEENIE vs. other synthesis methods on IXI dataset. 

Figure 4. Visual 
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methods. 
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Table 1. Quantitative evaluation: WEENIE vs. other SR methods on IXI dataset. 

Table 3. Quantitative evaluation: WEENIE vs. other synthesis methods on NAMIC dataset. 
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We focus on the PD-w subjects of the IXI dataset to compare the proposed WEENIE 

model with several state-of-the-art SR approaches:  ScSR [1], Zeyde’s [2], ANR [3], 

NE+LLE [4], A+ [5] and CSC-SR [6]. 

We perform SRCMS on IXI and NAMIC datasets involving six groups of experiments: (1) LR PD-w -> HR T2-w; (2) vice 

versa; (3) LR PD-w with pre-processing -> HR T2-w; (4) vice versa; (5) LR T2-w -> HR T1-w; (6) vice versa.  Cases (1-4) 

are conducted on the IXI dataset while cases (5-6) are evaluated on the NAMIC dataset. We compare our results 

with state-of-the-art synthesis methods including V-S [7], V-US [7] and MIMECS [8]. 
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