

CERTH CENTRE FOR ESEARCH & TECHNOLOGY HELLAS

Motivation

- Object recognition constitutes an open research challenge Scope: Hand and object segmentation ✓ Almost exclusively use of static appearance features • Output: a) colorized object depth maps, b) colorized hand depth maps, and c) ✓ Challenges: object appearance variance, occlusions, deformations, colorized hand 3D flow magnitude fields illumination variation Findings in cognitive neuroscience \checkmark Object perception is based on the fusion of sensory (object appearance) 3D Volume o and motor (human-object interaction) information Interest Cropped \checkmark Object affrdances: the types of actions that humans typically perform when interacting with them 300x300 Proposed approach 512x424 Accumulated evidence on ventral and dorsal stream interaction Depth Map (512x424) **Generalized Template Matching (GTM) architecture** Jorsal stream Object Appearance interaction decision: Information stream Scope: Estimation of co-Object appearance mplex multi-level affor-Colorized Ventral stream Object Depth dance-related patterns Novel contributions on sensorimotor object recognition along the spatial dimen-✓ Neurobiologically and neurophysiologically grounded Neural Network architectures sions Evaluation of multiple recent neuro-scientific findings **Colorized Hand 3D** Flow Based solely on the use ✓ Large number of complex affordance types Magnitude ✓ Large-scale public RGB-D object recognition dataset of CNNs Affordan Introduced SOR3D dataset Figure Top: appearance CNN 14 object categories for object recognition and 13 affordance types affordance CNN (single-stream Bottom: Detailed model). • 54 object-affordance GTM topology the of combinations architecture for: a) late fusion at FC layer, b) late fusion at 105 subjects last CONV layer, c) single-level • Over 20,800 instances slow fusion and d) multi-level slow fusion. Appearance information stream

- 3 synchronized Kinect II
- http://sor3d.vcl.iti.gr

Deep Affordance-grounded Sensorimotor Object Recognition

Spyridon Thermos, Georgios Th. Papadopoulos, Petros Daras, Gerasimos Potamianos

Information Technologies Institute, Centre for Research and Technology Hellas, Greece ² Department of Electrical and Computer Engineering, University of Thessaly, Greece

Visual front-end

Colorized depth map

Generalized Spatio-Temporal (GST) architecture

- Scope: Encoding of the time-evolving procedures of the performed human actions
- Composite CNN-LSTM NN considered
- Support of asynchronous fusion

Figure Top: affordance CNN-LSTM (single-stream model). Bottom: Detailed GST architecture for: a) late fusion and b) slow fusion.

- Up to 29% relative erro reduction, compared to the baseline model
- Recognition performance all supported object Of types boosted

Conclusions & future work

- probabilistic approaches of the literature.

Experimental results

	Fusion architecture	Accuracy (%)
or e	Baseline CNN (appearance only)	85.12
	GTM late	88.24
	GTM slow single level	88.13
	GTM slow multi-level	89.43
е	GST late	86.50
ct	GST slow single level	79.65
	Product Rule	73.45
	SVM	83.43
	Bayes	75.86

• The proposed NN-based sensorimotor approach outperforms similar

• Future work will investigate the modeling of the human-object interactions in more details and the application of the proposed methodology to "in the wild" object recognition scenarios.