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Abstract

Deep neural network is difficult to train and this predicament becomes
worse as the depth increases. The essence of this problem exists in the
magnitude of backpropagated errors that will result in gradient vanishing or
exploding phenomenon. We show that a variant of regularizer which utilizes
orthonormality among different filter banks can alleviate this problem.
Moreover, we design a backward error modulation mechanism based on the
guasi-isometry assumption between two consecutive parametric layers.
Equipped with these two ingredients, we propose several novel optimization
solutions that can be utilized for training a specific-structured (repetitively
triple modules of Conv-BN-RelLU) extremely deep convolutional neural
network (CNN) WITHOUT any shortcuts/ identity mappings from scratch.
Experiments show that our proposed solutions can achieve distinct
iImprovements for a 44-layer and a 110-layer plain networks on both the
CIFAR-10 and ImageNet datasets. Moreover, we can successfully train
plain CNNs to match the performance of the residual counterparts.

Besides, we propose new principles for designing network structure from
the insights evoked by orthonormality. Combined with residual structure, we
achieve comparative performance on the ImageNet dataset.

Motivation
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The performance of plain neural networks degrades as its depth

Increases beyond a certain layer numbers (usually 18~20 layers). Figure Is
referred from [1]. What are the potential factors and how to overcome this
problem?
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Problems Reside in Backprop

1. Batch Normalization (BN) perfectly stabilizes forward signal but biases the
distribution of backward signal a bit after one pseudo-normalization
transformation:
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2. The Jacobian matrix of BN Is rank- def|C|ent that violate the perfect dynamic
Isometry: ;-
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Solutions

. Introducing orthonormality (norm-preserving) constraints of weights to
alleviate vanishing or exploding phenomenon and provides more
probabillities by limiting set of parameters in an orthogonal space instead of
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. Modulation with a layer-wise mechanism dynamically (if necessary) since
JJ"
* Recently advance found by [2] supports our work convincingly, which shows
that orthogonality exists in primate’s brain!

References
[1] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image

recognition. arXiv:1512.03385, 2015.

[2] Le C, Tsao D Y. The Code for Facial Identity in the Primate Brain[J]. Cell, 2017,
169(6):1013.

All You Need is Beyond a Good Init: Exploring Better Solution for Training Extremely Deep

Convolutional Neural Networks with Orthonormality and Modulation
Di Xie (xiedi@hikvision.com), Jiang Xiong and Shiliang Pu

P

1.

W N

IEEE 2017 Conference on
Computer Vision and Pattern
Recognition

Ju;y ’2."1_2'6‘*2 0 1 l7
roofs & Results & Conclusions

Orthonormality regularization enhances the magnitude of backward signals

In extremely deep networks.

. It probably exists a potential evolution pattern in training deep networks.

. Orthonormality constraints helps reduce redundancies between filters,
which inspires filter pruning to optimize the architecture of networks.

. Regularization methods other than weight decay help explore different
manifold space that may approach better local minima.

. How to keep fidelity of signals instead of learning rate tuning is a key factor
for maklng a deep network to have a reasonable Iearnlng behawor
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Vo | - Top 1 Accﬁracy (%)
) | | Method 44-layer | 110-layer | 44-layer*
e e . Nesterov 85.0 10.18 61.9
B AdaGrad 77.86 30.3 36.1
. AdaDelta | 70.56 66.48 52.6
/] Adam 39.85 10.0 N/A
- RmsProp | 10.0 10.0 N/A
A U Lo ) SGD 84.14 11.83 65.2
/ . —’ ] A / i f/” " _ Ours 88.42 81.6 70.0




