

Object Co-skeletonization with Co-segmentation

School of Computer Science and Engineering

Koteswar Rao Jerripothula, Jianfei Cai, Jiangbo Lu and Junsong Yuan

Introduction

Goal: To exploit joint processing to extract objects' skeletons in images of the same category, which is also known as object co-skeletonization.

EXISTING PREFERRED Sensitive to Unsmooth Segmentations

Placed on Homogeneous Regions

This Paper: Leveraging existing co-segmentation idea to help perform co-skeletonization such that both the tasks help each other synergistically. Segmentation provides the required

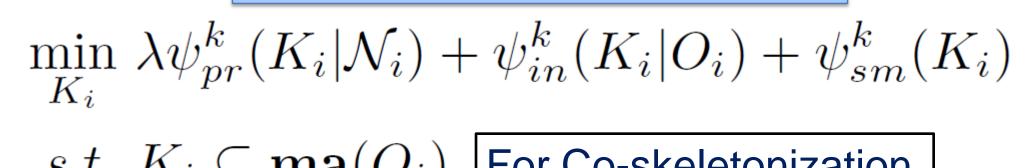
shape information for skeletonization, Skeletons

and skeletonization provides the required scribble information for segmentation.

Formulation

 $\left| \min_{K_i, O_i} \lambda \psi_{pr}(K_i, O_i | \mathcal{N}_i) + \psi_{in}(K_i, O_i | I_i) + \psi_{sm}(K_i, O_i | I_i) \right|$

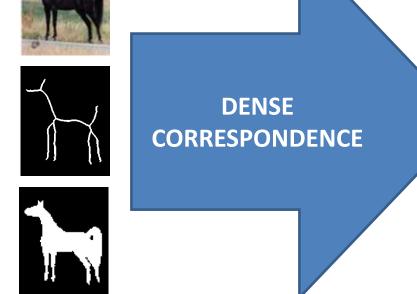
Skeleton Pruning Problem

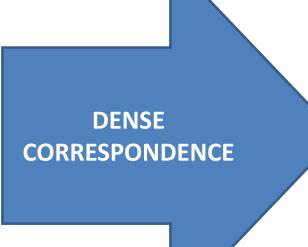


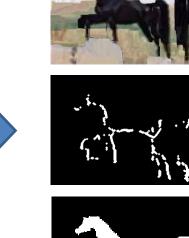
Interactive Segmentation Problem

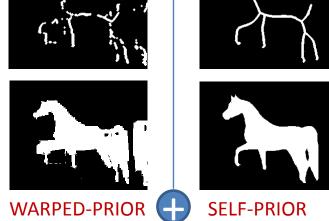
For Co-segmentation

Proposed Method

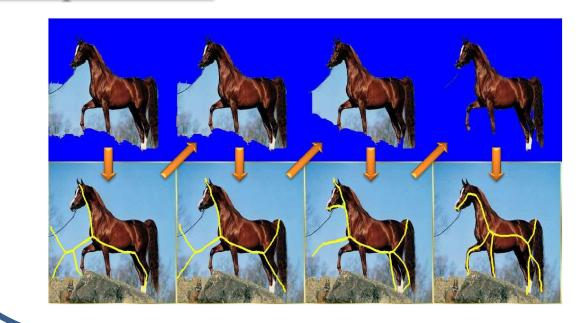




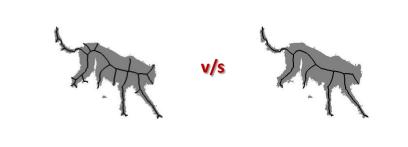




<u>Interdependence</u>:

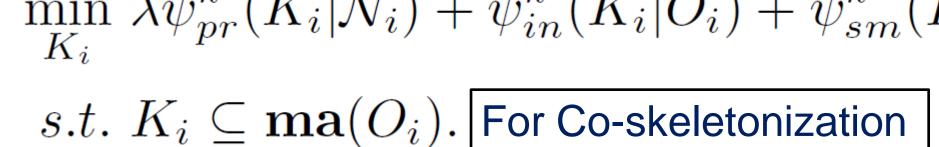


Smoothness: Typical spatial neighborhood smoothness and simplicity in segmentation and skeletonization, respectively.



- [15] Grabcut: Interactive foreground extraction using iterated graph cuts, TOG'04. [21] Skeleton pruning as trade-off between skeleton simplicity and reconstruction error, SCIS'13.
- [8] Detecting curved symmetric parts using a deformable disc model, ICCV'13.
- [9] Multiscale symmetric part detection and grouping, ICCV'09.
- [23] Multiscale centerline detection by learning a scale-space distance transform, CVPR'14. [25] Learning-based symmetry detection in natural images, ECCV' 12.
- [26] Local symmetry detection in natural images using a particle filtering approach, TIP'14.
- [29] Accurate centerline detection and line width estimation of thick lines using the radon transform, TIP'07

s.t. $K_i \subseteq \mathbf{ma}(O_i)$



$$\min_{O_i} \lambda \psi_{pr}^o(O_i | \mathcal{N}_i) + \psi_{in}^o(O_i | K_i, I_i) + \psi_{sm}^o(O_i | I_i). \tag{3}$$

Algorithm 1: Our approach for solving (1)

Data: An image set \mathcal{I} containg images of the same category

Result: Sets \mathcal{O} and \mathcal{K} containing segmentations and skeletons of images in \mathcal{I}

Initialization: $\forall I_i \in \mathcal{I}, O_i^{(0)} = \text{Otsu thresholded}$ saliency map and $K_i^{(0)} = \mathbf{ma}(O_i^{(0)});$

Process: $\forall I_i \in \mathcal{I}$,

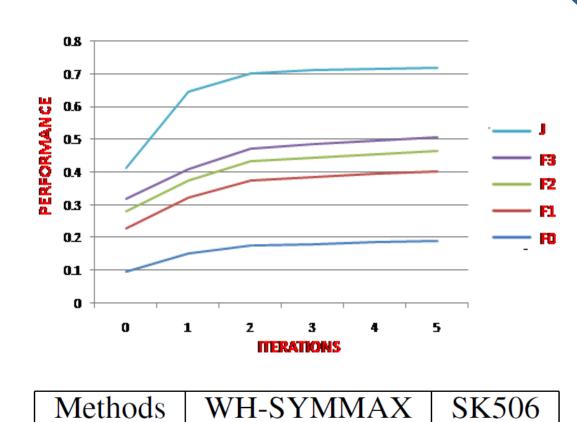
- 1) Obtain $O_i^{(t+1)}$ by solving (3) using [15] with $\mathcal{O}^{(t)}$ and $K_i^{(t)}$.
- 2) Obtain $K_i^{(t+1)}$ by solving (2) using [21] with $\mathcal{K}^{(t)}$ and $O_i^{(t+1)}$, s.t. $K_i^{(t+1)} \in \mathbf{ma}(O_i^{(t+1)})$.

while

 $(\lambda \psi_{pr} + \psi_{in} + \psi_{sm})^{(t+1)} \le (\lambda \psi_{pr} + \psi_{in} + \psi_{sm})^{(t)};$ $\mathcal{O} \leftarrow \mathcal{O}^{(t)}$ and $\mathcal{K} \leftarrow \mathcal{K}^{(t)}$

Method

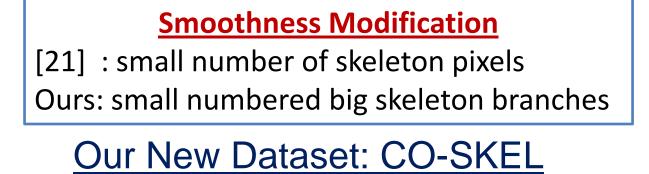
Experimental Results



0.174

0.218

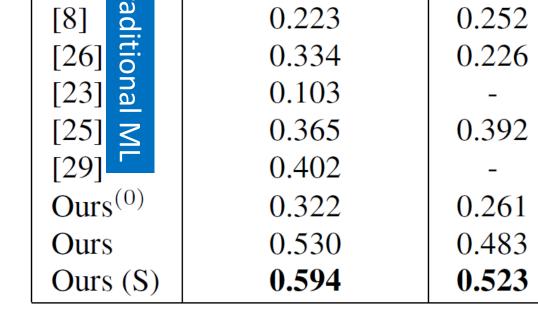
Ours	0.189	0.405	0.464	0.506	0.721
Ours (w/o ψ_{in})	0.168	0.337	0.391	0.434	0.649
Ours ⁽⁰⁾ Ours (w/o ψ_{in}) Ours	0.095	0.229	0.282	0.319	0.412
1/10/11/04					0

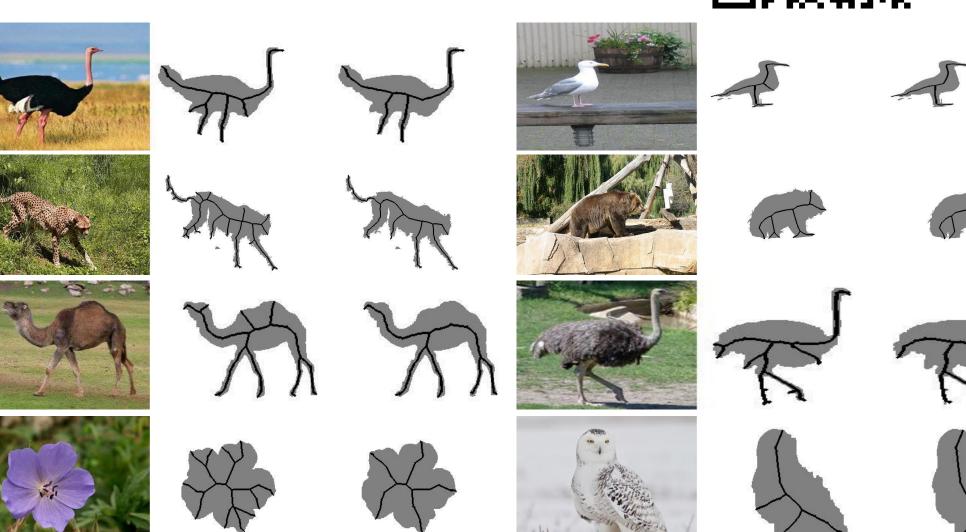


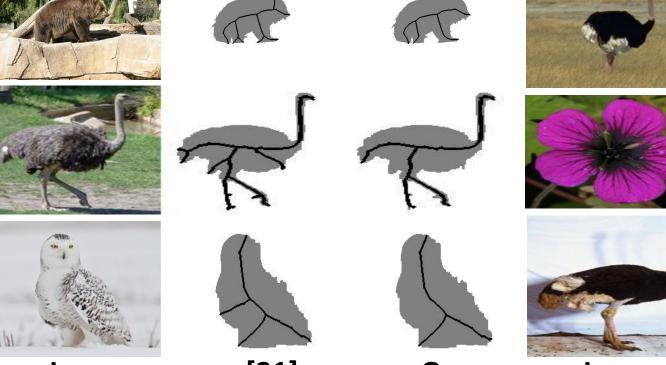
Image

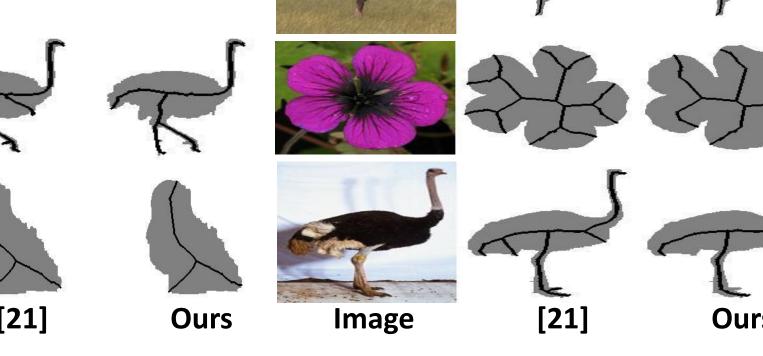
Ground

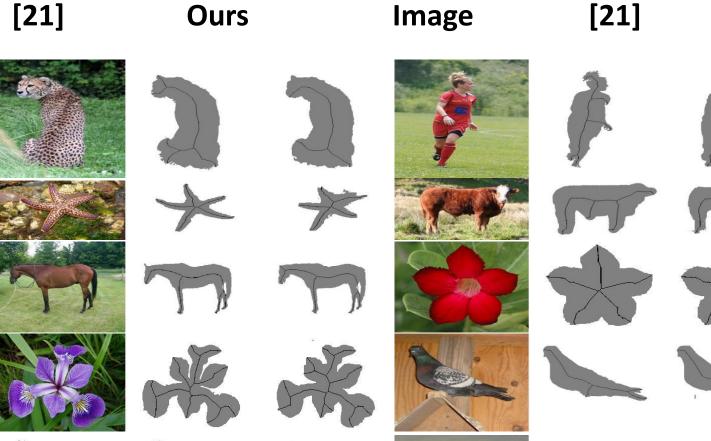
-Truth

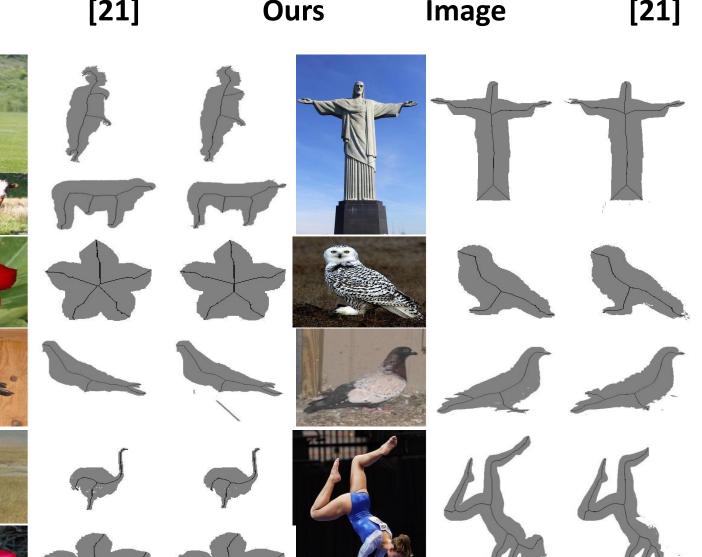












www.scse.ntu.edu.sg