Improving RANSAC-Based Segmentation Through CNN Encapsulation
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Statistical Results
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Classical pre-RANSAC Methods as Utility Layers
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» Sensible for industrial migration

» Preserves mathematical structure of preexisting implementation,
while providing optimizability of a CNN

» Example: L2-norm layer (think edge detection)
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Init: Weighted

» The above ideas can be used to Initialize a CNN to behave nearly subtraction

identical to an existing high-performance RANSAC segmentation
algorithm.

» Such a CNN can then In principle be fine-tuned to achieve even
better performance.

w/smoothing

» Statistically: biases significantly decreased; spread modestly decreased
» Pupil center absolute distance (pixels): 1.20 = 0.69 - 1.06 = 0.57

» Pupil radius absolute error (pixels): 0.57 = 0.48 = 0.47 = 0.42

» Not actually parallel
» Looks and behaves

parallel on init due to
zeroed out weights

» Thus “channel
crossing” can and
does occur In training

Individual Results

» These images show multiple errors that occurred before fine-
tuning, which no longer occur after fine-tuning.

» Erroneous segmentation occurs on only 1 out of 1500+ testing
Images after fine-tuning (similar error to above).



