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Goal
Highlight the most relevant objects in an image (saliency).

Proposed method
d Novel 4 X 5 multiresolution CNN grid structure
1 Contrast features
A Loss function inspired by the Mumford-Shah functional
d No CRF, no superpixels

Outcome

d Top performing method on 6 datasets
d Real-time, high performance saliency detection.

Mumford-Shah Function [5]

P Z /\1 ) — uj| dv + Z%]{dv

VEQ vel;
A,_/

boundary length

data fidelity

Bayesian statistical approximation [0]
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Final loss function
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(a) Input Image (b) Ground Truth

(c) Real Boundary

(d) Estimated Boundary

Figure 1. The loU boundary loss, end-to-
end trainable.
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(a) Source (b) GT

(c) Without Boundary (d) With Boundary

Figure 2. Visual comparison of saliency detection results
with and without the boundary loss term.
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Figure 3. Visual comparison between previous approaches and our method (NLDF).
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Figure 4. Precision and recall curve for the
HKU-IS datasets
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Table. Average execution time to process an image
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