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Motivation Model Experiments
Typical sequence classification models are designed for » Recurrent Attention-Gated Units We perform experiments with TAGM on three datasets to show generalization across different tasks and modalities.
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Contributions

* Automatically capture salient parts of the input noisy
sequence to achieve better performance.

sample for each digit). For each subfigure, the top subplot shows

The visualization of attention weights of TAGM. The scores displayed are the groundtruth label indicating the
sentiment for this review. Darker color indicates smaller scores.
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Treebank dataset for both binary classification
and 5-level fine-grained classification task.
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‘birthday’ and

- ‘infield zone’ for
g ‘baseball’.

Event: baseball

Mean Average

Precision (mAP) of our TAGM
model and baseline models on CCV dataset.




