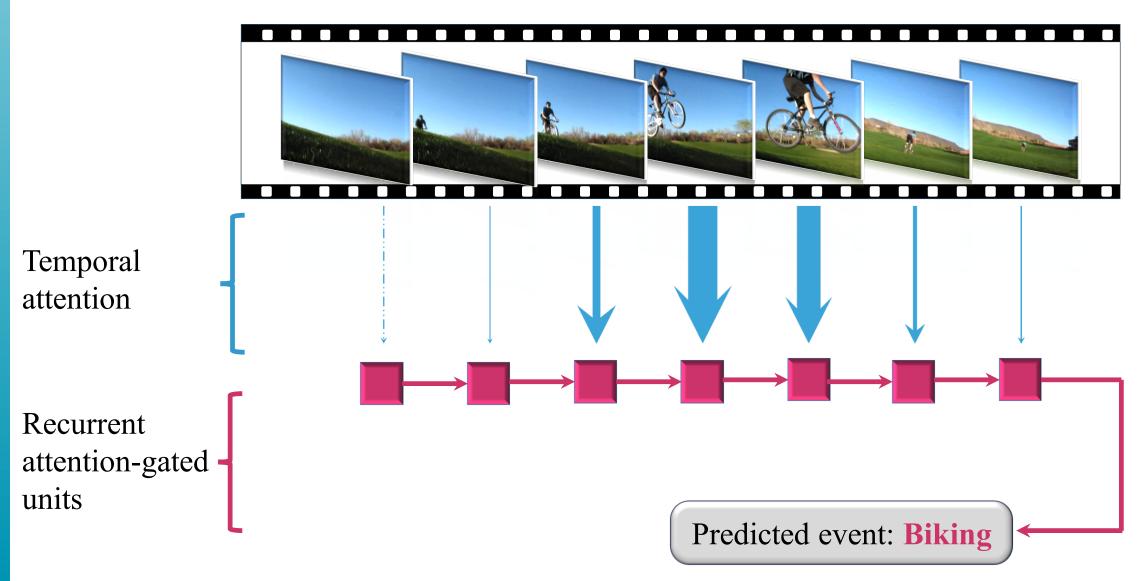


Motivation

Typical sequence classification models are designed for well-segmented sequences, which often need manual and time-consuming pre-processing.

Goal: We propose Temporal Attention-Gated Model (TAGM) to better deal with **noisy** or **unsegmented** sequences by automatically locating the salient segments.



Our model can automatically extract the salient frames from the noisy raw input sequences and learns an effective hidden representation for the top classifier. The wider the arrow is, the more salient the frame is and the more the information is taken into account for prediction.

Contributions

- Automatically capture salient parts of the input noisy sequence to achieve better performance.
- Inferred meaningful attention scores provide interpretation for the informativeness of each time step.
- Less parameters leading to faster training and better generalizability with less training data.
- Generalization across different tasks and modalities.
- Code available¹.

¹https://github.com/wenjiepei/TAGM.

Temporal Attention-Gated Model for Robust Sequence Classification Wenjie Pei¹, Tadas Baltrušaitis², David M.J. Tax¹ and Louis-Philippe Morency² ¹Pattern Recognition Laboratory, Delft University of Technology ²Language Technologies Institute, Carnegie Mellon University

Model

Recurrent Attention-Gated Units

To learn an effective hidden representation.

$$\mathbf{h}_t = (1 - a_t) \cdot \mathbf{h}_{t-1} + a_t \cdot \mathbf{h'}_t$$

$$\mathbf{h'}_t = g(\mathbf{W} \cdot \mathbf{h}_{t-1} + \mathbf{U} \cdot \mathbf{x}_t + \mathbf{b})$$

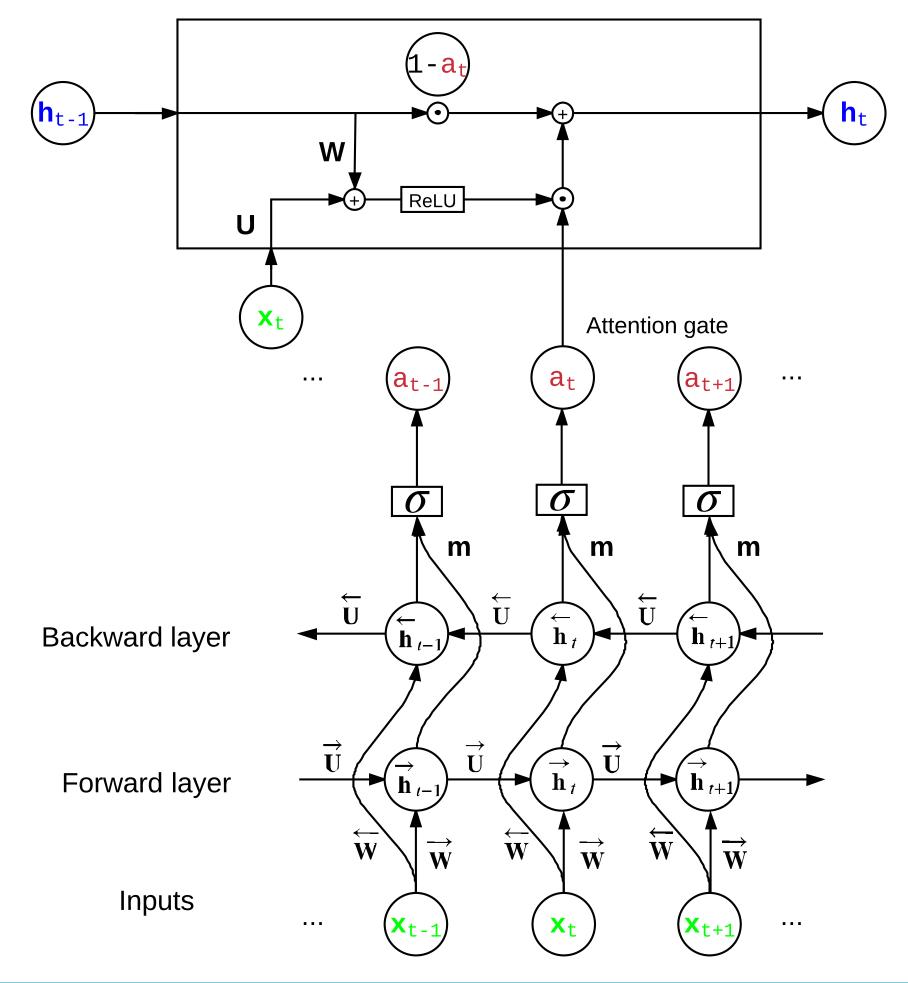
Temporal Attention Module

To extract salient frames.

$$a_{t} = \sigma(\mathbf{m}^{\top}(\vec{h}_{t}; \vec{h}_{t}) + b)$$

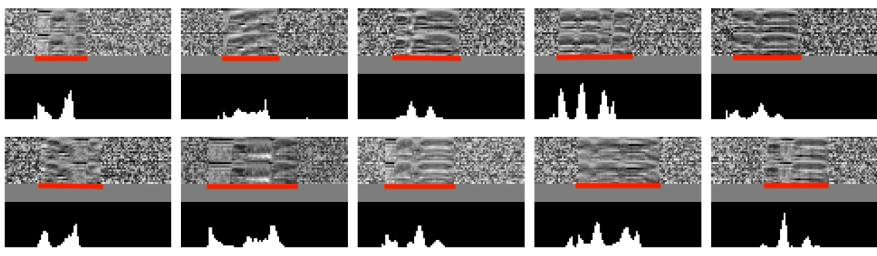
$$\overrightarrow{h}_{t} = g(\overrightarrow{\mathbf{W}}\mathbf{x}_{t} + \overrightarrow{\mathbf{U}}\overrightarrow{h}_{t-1} + \overrightarrow{\mathbf{b}})$$

$$\overleftarrow{h}_{t} = g(\overleftarrow{\mathbf{W}}\mathbf{x}_{t} + \overleftarrow{\mathbf{U}}\overrightarrow{h}_{t+1} + \overrightarrow{\mathbf{b}})$$



Experiments

We perform experiments with TAGM on three datasets to show generalization across different tasks and modalities.

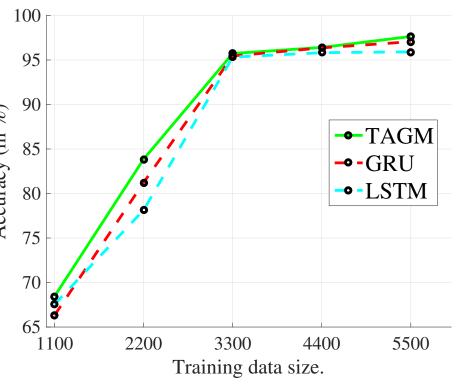


Sentiment Analysis

Speech Recognition

Dataset: Noisy Arabic spoken digit dataset (8800 utterances, 10 digits) Feature: MFCCs

The visualization of attention weights of TAGM on 10 samples (one sample for each digit). For each subfigure, the top subplot shows the spectrogram of the original sequence data while the bottom subplot shows the attention values over time. The red lines indicate the groundtruth of salient segments.



The classification accuracy on the noisy Arabic spoken digit dataset as a function of the size of training data.

Dataset: Stanford Sentiment Treebank (11,855 review sentences, binary-classification or fine-grain Feature: 300-d glove word vectors

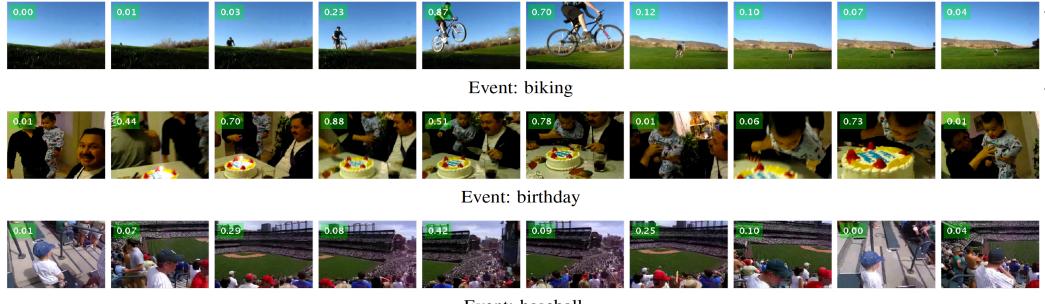
-			. J																				
									C C	Score = 0	.208												
	,		flat	a	and	boring		wer	ewolf	m	ovie	1	that		refuses	;	to	C	develop	a	an	energ	ĴУ
										Score = 0	.792												
film	':	s	credit	,	the	acting	is	fresh	an	d unself	consciou	s	,	and	Munch	is	а	marve	of	realit	.y V€	ersus	sappy
										Score = 0).167												
	that	is	n't	reallv	aood	enouah	to	be	on	afternoon	ΤV	is	now	а	movie	that	is	n't	reallv	aood	enouah	ו to	be

The visualization of attention weights of TAGM. The scores displayed are the groundtruth label indicating the sentiment for this review. Darker color indicates smaller scores.

Event Recognition

Dataset: Columbia Consumer Video Database (9317 videos, 20 events)

Feature: CNN features from pre-trained AlexNet model



The attention weight is indicated representative frames. Our TAGM is able to capture the action of '**riding bike**' for the event 'biking', 'cake' for the event 'birthday' and 'infield zone' for baseball

IEEE 2017 Conference on **Computer Vision and Pattern** Recognition

Model	#Hidden units	#Parameters	Accuracy		
HULM*	—	—	95.32		
HCRF^*	—	—	96.32		
HULM	—	_	88.27		
HCRF	—	—	90.41		
Plain-RNN*	256	75 K	94.95		
Plain-RNN	256	75 K	10.95		
GRU	128	61 K	97.05		
LSTM	128	81 K	95.91		
NN	64	2.4 K	65.50		
AM-NN	128-64	43 K	85.59		
TAGM	128-64	47 K	97.64		
Bi-GRU	64	37 K	97.68		
Bi-LSTM	256	587 K	97.45		
Bi-TAGM	128-128	83 K	97.91		

Classification accuracy (%) on Arabic spoken digit dataset by different sequence classification models. Asterisked models (*) are trained and evaluated on the clean version of data.

		Model	Binary	Fine-grained	Overall	
		WIOUEI	Dillary	rine-granieu	Performance	
ned task)	Unordered	NBOW-RAND	81.4	42.3	123.7	
		NBOW	83.6	43.6	127.2	
	compositions	BiNB	83.1	41.9	125.0	
		RecNN	82.4	43.2	125.6	
	Suntantia	RecNTN	85.4	45.7	131.1	
	Syntactic	DRecNN	86.6	49.8	136.4	
	compositions	DAN	86.3	47.7	134.0	
		TreeLSTM	86.9	50.6	137.5	
		CNN-MC	88.1	47.4	135.5	
iment .		PVEC	87.8	48.7	136.5	
	Our model	TAGM	87.6	50.1	137.7	

Classification accuracy (%) on Stanford Sentiment Treebank dataset for both binary classification and 5-level fine-grained classification task.

Model	Training strategy	Feature	mAP
		SIFT	0.52
BOW+SVM	Separately	STIP	0.45
+late average fusion	(one-vs-all)	SIFT+STIP	0.55
		CNN	0.67
Plain-RNN	Jointly	CNN	0.45
GRU	Jointly	CNN	0.56
LSTM	Jointly	CNN	0.55
TAGM	Jointly	CNN	0.63

Mean Average Precision (mAP) of our TAGM model and baseline models on CCV dataset.