
Reflectance Adaptive Filtering Improves Intrinsic Image Estimation
Thomas Nestmeyer1,3, Peter V. Gehler1,2,3

1University of Würzburg; 2BCCN, Tübingen; 3MPI for Intelligent Systems, Tübingen

{thomas.nestmeyer, peter.gehler}@tuebingen.mpg.de

References:
1.  Sean	Bell	et	al.	“Intrinsic	Images	in	the	Wild”	(SIGGRAPH	2014)	
2.  Bi	et	al.	“An	L1	image	transform	for	edge-preserving	smoothing	and	scene-level	intrinsic	decomposiAon”	(SIGGRAPH	2015)	
3.  Zoran	et	al.	“Learning	ordinal	relaAonships	for	mid-level	vision”	(ICCV	2015)	
4.  Petschnigg	et	al.	“Digital	photography	with	flash	and	no-flash	image	pairs”	(SIGGRAPH	2004)	
5.  He	et	al.	“Guided	image	filtering”	(ECCV	2010)	

 Take home message
•  CNN method allowing end-to-end training on sparse relative reflectance judgments.
•  Learned pixelwise non-linear reflectance prediction with competitive WHDR.
•  Allows real time intrinsic video (~180 fps on GPU).
•  Use reflectance adaptive filtering to encourage piecewise constant reflectance assumption.
•  Filtered results outperform the current state-of-the-art by far.

 Direct CNN Prediction

https://ps.is.tue.mpg.de/research_projects/reflectance-filteringPerceiving Systems

 Reflectance Adaptive Filtering

 Pixelwise Reflectance Prediction

0.6 0.8 1 1.2 1.4

0

0.2

0.4

0.6

1
1+�

1 + �

Ji = 2 Ji = E Ji = 1

Figure 1. Visualization of the WHDR-Hinge loss dependent on the
ratio Ri1/Ri2 for � = 0.1 and ⇠ = 0.05. The value of � controls
where the decision boundary for darker/lighter or equal reflectance
lightness is made. With the value ⇠, a margin from this boundary
is encouraged. For values ⇠ > � the E class will always have a
non-zero loss.

steps are separate from the classifiers and motivated by
common intrinsic prior terms. We will circumvent any post-
processing by directly predicting a dense reflectance map R.

4. Direct Reflectance Prediction with a CNN
We propose an objective function that makes direct use

of the relative reflectance judgments by humans that the IIW
dataset provides. This weak label information has been used
in [37, 38] for CNN training already, treating it however as a
multi-class classification problem. While a multi-class loss
achieves good performance on pairs of points, this strategy
requires an additional globalization step to propagate infor-
mation to all pixels. Our aim is to directly decompose the
entire image with a single forward pass of a CNN, avoiding
any need for post-processing.

We will first discuss the loss function that we use and
then describe the network architecture and training method.

4.1. WHDR hinge loss

We construct a proxy loss for the WHDR that can be used
for supervised training. The formulation is an adaption of
the "-insensitive loss for regression [33] for this problem
setup. We define

`�,⇠ (J,R, i) =

8
>>>>><

>>>>>:

max

⇣
0,

Ri1
Ri2

� 1
1+�+⇠

⌘
if Ji = 1

max

0,

(
1

1+��⇠ � Ri1
Ri2

,

Ri1
Ri2

� (1 + � � ⇠)

!
if Ji = E

max

⇣
0, 1 + � + ⇠ � Ri1

Ri2

⌘
if Ji = 2,

(4)

which is visualized in Fig. 1. The scalar � is the thresh-
old of the WDHR� and we introduce the hyper-parameter ⇠,
which is the margin between the neighbouring classes 1, E
and 2, E.

The pipeline of supervised training is simple. A network
produces a dense decomposition R, which is then used to
arrive at relative judgments for two pixel locations based on

the ratio of the predicted R values. The loss in Eq. (4) is
then weighted and summed over all annotated pixel pairs,
similar to Eq. (3), and the error is propagated backwards to
compute the gradients of the network parameters.

As with the standard hinge-loss commonly used for bi-
nary SVM training, the sub-gradients of the WHDR-hinge
loss can be easily computed.

4.2. Train and test data set

The IIW dataset does not come with a pre-defined train,
validation and test split. We adopt the split suggested
by [26] into 80% training and 20% test images, putting the
first of every five images sorted by file name in the test set.
In order to properly evaluate different models, we addition-
ally split the data into a separate validation set, with the ra-
tios of 70% training, 10% validation and 20% test. We keep
the test set of [26], and use from every series of 10 images
the seventh in the validation set.

4.3. Network architecture of the CNN

We take the linearized RGB images in the range [0, 1] as
input, evaluate a series of n convolutional layers with f fil-
ters each, acting on a kernel of size k, with a ReLU as non-
linear activation function in between. The padding in the
convolutions is chosen based on k, so as to not change the
resolution. The output of all nonlinearities is concatenated
and convolved with a 1⇥ 1 filter to fuse the information of
skipped layers. A last sigmoidal activation function bounds
the single channel output r, on which the WHDR-Hinge
loss, as given in Section 4.1, operates during training.

One final layer recovers RGB reflectance R and shad-
ing S from the scalar reflectance intensity r, as given
in Eq. (1), to output the final dense intrinsic image decom-
position.

Resolving light intensity The last nonlinearity in the net-
work acting on r is included since ambiguity about the light
intensity in an image cannot be solved. It is only possi-
ble to determine reflectance and shading up to a constant
↵ 2 (0,1), since I = RS = (↵R)

�
1
↵S
�
. Therefore,

to keep the reflectance values bounded, we employ a sig-
moidal activation function to limit the scalar reflectance in-
tensity to be in the range [0, 1].

4.4. Experiments

For all experiments in this paper we use the open source
deep learning framework caffe [20] utilizing the ADAM
solver [21] with a learning rate of 0.001, momentum of
�1 = 0.9 and momentum-2 of �2 = 0.999. All training
images are resized to a fixed 256 ⇥ 256 pixel resolution to
be able to process them in batches. More details about data
augmentation and label analysis are included in the supple-
mentary.

2 4 6 8

number of filters f in log2

2

4

6

8

nu
m

be
r

of
la

ye
rs

n

21.0

21.2

21.4

21.6

21.8

W
H

D
R

0 20 40 60 80 100

WHDR0.1 (in %)

3x GF(Zoran et al. 2015, flat)*
BF(Zoran et al. 2015, flat)*

BF(Bi et al. 2015, flat)
Bi et al. 2015

GF(CNN, flat)
Zoran et al. 2015*

BF(CNN, CNN)
Direct CNN prediction

Zhou et al. 2015

Bell et al. 2014

L1 flattening
Zhao et al. 2012

Garces et al. 2012

Rescaling to [0.55, 1]
Retinex (gray)

Retinex (color)

Shen et al. 2011

Baseline (const R)

Baseline (const S)
median mean

14.55

15.51

16.12

16.42

16.71

16.55

18.12

18.91

19.13

19.63

19.58

22.23

24.40

25.44

25.80

26.35

31.36

36.71

51.04

15.78

16.38

17.46

17.67

17.69

17.85

18.89

19.49

19.95

20.64

20.94

23.20

25.46

25.70

26.84

26.89

31.90

36.54

51.37

0.00 0.05 0.10 0.15

margin ⇠

0.08

0.10

0.12

0.14

0.16

0.18

th
re

sh
ol

d
�

20.5

20.6

20.7

20.8

20.9

21.0

21.1

21.2

W
H

D
R

 Results

16 18 20 22 24 26

mean WHDR in %

10�2

10�1

100

101

102

103

ru
nt

im
e

in
se

co
nd

s

Rescaling to [0.55, 1]

Retinex (color)

Retinex (gray)

Garces et al. 2012

Zhao et al. 2012

Bell et al. 2014

Zhou et al. 2015

Bi et al. 2015
L1 flatteningBF(Bi et al. 2015, flat)

Direct CNN prediction

BF(CNN, CNN)

Zoran et al. 2015*

3x GF(Zoran et al. 2015, flat)*

Full resolution CNN utilizing ReLUs and skip connections.

Novel loss function for training, the WHDR-Hinge loss

Insight: 1x1 convolutions work just as well as bigger kernels

Predictions for IIW ID 97794:

Input Scalar
reflectance

Reflectance Shading

Flat guidance
image [2]

Our filtered
reflectance

Input Reflectance of [3]

Shading of [3] Our shading

Reconstructed
Reflectance

Input Scalar reflectance
prediction by CNN

Visualization of
WHDR-Hinge

`�,⇠ (J,R, i) =
8
>>>>><

>>>>>:

max

⇣
0,

Rpi
Rqi

� 1
1+�+⇠

⌘
if Ji = 1

max

0,

(
1

1+��⇠ � Rpi
Rqi

,
Rpi
Rqi

� (1 + � � ⇠)

!
if Ji = E

max

⇣
0, 1 + � + ⇠ � Rpi

Rqi

⌘
if Ji = 2,

 Intrinsic Images in the Wild (IIW)

Bev Sykes

(a) Sparse sampling.

Bev Sykes

(b) Dense sampling.

1 2

“Point 1 is darker” (1):

“About the same” (E):

1 2

Confidence w
i

:

0.0 0.5 1.0

Yes No

Rejected point:

Figure 3: Aggregated human judgements for an example scene. The edges connecting points indicate the aggregated reflectance judgement
comparing the two points. We sample points at two different densities: (a) sparsely, at 7% of the image width and (b) densely, at 3%.

mistake. We chose difficult test scenes that force users to understand
concepts such as: local highlights do not affect surface reflectance,
and viewing the scene as a whole is sometimes necessary to visually
comprehend and compare reflectance. The tutorial we developed is
shown in the video and included on our website.

Efficient input. Since users are to provide thousands of answers,
we designed an interface that allows for rapid input. For each photo,
our interface displays the photo in its entirety, pauses for 1 second,
and then zooms to show a pair of points. Once the user indicates
their answer for that pair, the interface smoothly zooms to the next
pair of points. We use van Wijk smooth zooming [van Wijk and Nuij
2003] (implemented by D3 [Bostock 2013]) to quickly show the
next pair of points. At any time, users can zoom in/out, pan around
the image, or repeat the zoom animation and have the points flash to
make them easier to see. Users can also return to the previous pair
and enter a new answer.

Users had unanimously positive feedback regarding our task UI:

• “Fun. It’s exactly what I wish there was more of on MTurk as
far as image categorization/similar HITs go.”

• “This task is very well-designed and easy to understand and
complete. The zoom function is quite helpful.”

• “These are addicting as all hell.”

Mirror and transparent surfaces. Prior to asking users to judge
relative surface reflectance, we filter points through an initial stage
in which users flag points as being either on a mirror or on a trans-
parent surface (Figure 2(b)). As with our comparison task, a tutorial
explains the types of surfaces we want filtered and lets users practice.
See the video for more illustrations of our two user interfaces.

3.4 Data verification

After showing a pair of surface points to multiple workers, we want
to classify that pair into one of three categories: (1) Point 1 has a
darker reflectance than Point 2, (2) Point 2 has a darker reflectance
than Point 1, and (3) they have approximately the same reflectance.
We could do simple majority voting on the user-provided input to
determine the category; however, consistent with other work on
crowdsourcing, we found that the raw input is too noisy for this
simple approach to work well.

On Mechanical Turk, there are thousands of workers of varying
skill. While we believe that almost all the workers are capable of
performing the task, we found that a significant fraction of workers
(about 31%, based on our analysis below) either did not try to do the
task correctly, or did not understand the instructions, even after the

Figure 4: Histograms of worker performance (left) and time spent
(right). Vertical axis on both plots: number of users. Left: per-
centage of sentinel data answered correctly. Right: time spent and
effective wage (pay per task / time spent).

tutorial where they can try out the task and receive feedback explain-
ing the correct answer. To address this problem, we take three steps
to ensure high-quality data: (1) we replicate every task (i.e., each
pair of points) to at least 5 workers, (2) we insert “sentinel” objects
with known answers into each task, and (3) we use the CUBAM
machine learning algorithm [Welinder et al. 2010] to automatically
model user competence and bias when computing consensus labels.

Sentinels. Inspired by the microtasks work of Gingold, et
al. [2012], each of our tasks (also known as a “HIT” on AMT)
contains 25 comparisons plus 5 “sentinel” comparisons drawn from
a set of known answers. To hide which items are sentinels, our
server dynamically selects 5 test items that the worker has not seen
before. As a user submits tasks, we measure their accuracy on the
sentinels. The moment a user makes at least 5 mistakes and has an
average accuracy below 80%, that user is blocked from performing
the task. We add the test for average accuracy to avoid prematurely
blocking users. When a given user has seen all test items, we stop
serving the 5 extra comparisons, as the user has proven to be accu-
rate enough on all sentinels. We chose to test a user across HITs,
rather than including a large amount of sentinel items inside each
HIT since we found that workers maintain approximately the same
accuracy between submissions. This wastes less resources ensuring
that workers are behaving correctly. Figure 4 shows the distribution
of worker scores on sentinel items. With this method, about 31%
of users were blocked. Users seemed appreciative of the fact that
the effective pay increased after the sentinels were finished, and we
only identified a single user who passed our tests and later began
submitting random answers (some time after the sentinels finished).

Modeling workers. Once we have filtered out users who are not
correctly performing the task, we must aggregate the reliable answers
to obtain a single judgement J

i

for each pair of points. Since some
comparisons can be genuinely ambiguous, we would like to assign a
confidence (or weight) w

i

to each judgement J
i

. Further, different

5230 Flickr images having each about 100 pairwise relative
reflectance judgments from humans [1].Learning from Sparse Comparison Labels:

Fast Intrinsic Image CNNs
Thomas Nestmeyer, Peter V. Gehler {tnestmeyer, pgehler}@tue.mpg.de
Max Planck Institute for Intelligent Systems, Perceiving Systems Department, Tübingen, Germany

ABSTRACT
Dense intrinsic image separation poses a chal-
lenge for learning approaches because no large
corpus of precise and realistic ground truth de-
compositions exists. We suggest a CNN train-
ing procedure that estimates reflectance and
shading very fast at test time, trained using
only a sparse set of human annotation labels.

REFERENCES

[1] Sean Bell et al. “Intrinsic Images in the Wild” in ACM Transactions on Graphics (SIGGRAPH 2014).

INTRINSIC IMAGES
Decompose a single image into its reflectance
and shading components:

Reflectance Physical property of object, invari-
ant under different lighting conditions.
Improves, e.g., segmentation or recogni-
tion algorithms in robotics.

Shading Defines scene illumination: num-
ber, location, and color of the light
sources, light occlusion by geometry, etc.
Improves shape-from-shading.

DATASET
Intrinsic Images in the Wild (IIW) [1]:

• 5230 images from Flickr.
• Sparsely sampled pairwise comparisons.
• Relative reflectance judgements by hu-

man workers.
• About 100 judgments per image.

RELATED WORK
Overview of different intrinsic image estima-
tion methods:

Method
CNN

trained
on IIW

CNN
decomposes

densely
Retinex 8 8
Bell 14 8 8
Bi 15 8 8
Narihira CVPR15 4 8
Zhou 15 4 8
Zoran 15 4 8
Narihira ICCV15 8 4
Our method 4 4

ERROR METRIC
Weighted Human Disagreement Rate:

WHDR�(J,R) =

P
i wi · 1

⇣
Ji 6= ˆJ�(R, i)

⌘

P
i wi

ˆJ�(R, i) =

8
><

>:

1 if Rqi/Rpi > 1 + �

2 if Rpi/Rqi > 1 + �

E else,

OUR METHOD
We propose WHDR-hinge, a proxy loss for the
WHDR as adaption of the "-insensitive loss for
regression, to learn from sparse annotations:

`�,⇠ (J,R, i) =
8
>>>>><

>>>>>:

max

⇣
0,

Rpi
Rqi

� 1
1+�+⇠

⌘
if Ji = 1

max

0,

(
1

1+��⇠ � Rpi
Rqi

,
Rpi
Rqi

� (1 + � � ⇠)

!
if Ji = E

max

⇣
0, 1 + � + ⇠ � Rpi

Rqi

⌘
if Ji = 2,

Visualization of training loss function:

0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

1
1+�

1 + �

Ji = 2 Ji = E Ji = 1

EXPERIMENTS
Parameter sweep over purely convolutional
network architecture:

Speed/performance trade-off: 3 layers with
2

7
= 128 filters each applying 3⇥ 3 kernels.

Parameter tuning for margin ⇠ and threshold �
during training:

Best training results with ✓ = 0.16, ⇠ = 0.12,
and lr = 0.001 and continued with ✓ = 0.13,
⇠ = 0.09, and lr = 0.0001.

QUANTITATIVE RESULTS
Performance comparison on Narihira test set
with common threshold � = 0.1:

Fast test time inference by design. Allows real
time intrinsic video (37fps on GPU):

QUALITATIVE RESULTS

Input Reflectance Shading

SUMMARY
CNN method allowing end-to-end training on
sparse relative reflectance judgments. A sim-
ple three layer CNN leads to competitive per-
formance to state-of-the art, while ensuring
very fast intrinsic image decompositions dur-
ing test-time.

Ĵ�(R, i) =

8
><

>:

1 if Rqi/Rpi > 1 + �

2 if Rpi/Rqi > 1 + �

E else

New idea: Encourage piecewise constant reflectance by
filtering reflectance predictions.
Bi et al. [2] formulated an optimization problem inferring an L1-
flattened image (grouping pixels into regions of similar
reflectance) as part of their pipeline. We call this the ‘flat
guidance image’.
We can filter any reflectance estimate using this guidance.

 The Intrinsic Images Problem

Reflectance: Physical property of objects, invariant under
different lighting conditions.
Shading: Separates scene illumination: number, location, and
color of the light sources, light occlusion by geometry, etc.

Input Reflectance Shading

Decompose single image into its reflectance and shading layers

(,)

Guided filtering [5] is very fast, but a reflectance prediction as
input and a guidance image is needed. We are working on
speeding the most expensive latter part up.

•  While small receptive fields might work to infer the true
reflectance (Retinex theory), estimating it from a single input
pixel is not possible.

•  Still: Performance on par with state-of-the-art!
•  Very fast reflectance predictions by construction
•  Many small variations in reflectance prediction`

