Temporal Action Co-Segmentation in 3D Motion Capture Data and Videos

$>$ Given two action sequences (of motion capture or video data), w are interested in spotting \& co-segmenting all pairs of sub sequences (commonalities [1]) that represent the same action.
 \qquad

 The number of common subsequences may be unknown. The sub-sequences can be located anywhere in the long sequences, may differ in duration and the corresponding actions may be performed by different person, in different style.

MOTIVATION

The discovery of common action patterns in two or more sequences provides an efficient bottom-up way to: segment action sequences, identify a set of elementary actions,
\checkmark build models of the performed activities in an unsupervised manner.

We propose a totally unsupervised solution to the problem of temporal action co-segmentation using stochastic optimization by employing Particle Swarm Optimization (PSO). The objective function that is minimized by PSO capitalizes on Dynamic Time Warping (DTW) to compare two action sequences.

[1] W.S. Chu, et.al. Unsupervised temporal commonality discovery, ECCV 2012. [2] A. S. Park, et.al. Unsupervised pattern discovery in speech. IEEE/ACM TASLP 2008.
[3] J. Guo, et.al. Video cosegmentation for meaningful action extraction. IEEE ICCV 2013 [4] H. Wang, et.al. Action recognition with improved trajectories. IEEE ICCV 2013. [5] J,Kennedy, et.al.,"Particle Swarm Optimization". IEEE ICNN 1995. 6] R.Ofli et.al., Berkeley MHAD: A Comprehensive Multimodal Human Action Database. IEEE WACV 2013.

Konstantinos Papoutsakis ${ }^{1,3}$, Costas Panagiotakis ${ }^{2,3}$, Antonis A. Argyros ${ }^{1,3}$
CR PR

PROPOSED FRAMEWORK

Evaluating a candidate commonality using DTW

We treat the action sequences as multivariate time-series of either:
\checkmark 3D motion capture data: angle-based feature representation of skeletal joints. or 2D video data: motion-based feature (dense trajectories [4]) in RGB videos.

Spotting a single commonality using PSO

\checkmark Define an objective function based on the $\mathrm{D}(\mathrm{p})$ score and the
\#diagonal steps $n_{p}(p)$ in the optimal path p of DTW.
\checkmark Optimize (minimize) over all possible commonalities in the 4D search space using the PSO for P particles over G generations.
$O(p)=\frac{D(p)+c}{n p(p)+1}$
$\Omega\left(p_{i}, p_{j}\right)=\frac{|R(p i) \cap R(p j)|}{|R(p i)|}$

Spotting multiple commonalities
Define a new objective function using the normalized overlap among retrieved commonalities
$O(p)=\frac{D(p)+c}{n_{p}(p)+1} \quad p_{i}^{*}=\underset{p}{\arg \min }\left(O(p i)+\lambda \sum_{j=1}^{i-1} \Omega(p i, p j)\right)$
EXPERIMIENTAL RESULTS

\checkmark Quadruple $\boldsymbol{p}=\left(\boldsymbol{s}_{1}, \boldsymbol{l}_{1}, \boldsymbol{s}_{2}, \boldsymbol{l}_{2}\right)$ defines a 2 D rectangle $\mathbf{w}_{1,2}$ in $\mathrm{W}_{\mathrm{A}, \mathrm{B}}$ that is a possible commonality p . $\checkmark \begin{aligned} & \text { Compute the alignment DTW score } \mathrm{D}(\mathrm{p}) \text { in the } \mathrm{w}_{1,2} \\ & \text { submatrix. }\end{aligned}$ submatrix.
\checkmark Define a particle $\mathbf{p} \otimes$ in the 4D PSO search space.

Supervised vs Unsupervised Action Co-segmentation S-EVACO: Number of commonalities is known a-priori. U-EVACO: The number of common actions is determined automatically by solving a model selection task.
$j^{*}=\underset{j \in\{1, \ldots, K-1\}}{\operatorname{argmax}}\left|\frac{1}{j} \sum_{i=1}^{j} O(p i)-\frac{1}{K-j} \sum_{i=j+1}^{K} O(p i)\right|$
$\square$$O(p i)$

