

¹Computer Science Department, University of Crete, Greece ²Business Administration Department, TEI of Crete, Greece ³Institute of Computer Science, FORTH, Greece

PROBLEM

 \succ Given two action sequences (of motion capture or video data), we are interested in spotting & co-segmenting all pairs of subsequences (commonalities [1]) that represent the same action.

 \checkmark No a-priori model or labels of the actions are available.

 \checkmark The number of common subsequences may be unknown.

 \checkmark The sub-sequences can be located anywhere in the long sequences, may differ in duration and the corresponding actions may be performed by a different person, in different style.

MOTIVATION

The discovery of common action patterns in two or more sequences provides an efficient bottom-up way to:

- segment action sequences,
- identify a set of elementary actions,
- **build models** of the performed activities in an **unsupervised manner**.

MAIN IDEA

We propose a totally unsupervised solution to the problem of temporal action co-segmentation using stochastic optimization by employing Particle Swarm Optimization (PSO).

The objective function that is minimized by PSO capitalizes on **Dynamic Time Warping (DTW)** to compare two action sequences.

REFERENCES

[1] W.S. Chu, et.al. Unsupervised temporal commonality discovery, ECCV 2012.

[2] A. S. Park, et.al. Unsupervised pattern discovery in speech. IEEE/ACM TASLP 2008.

[3] J. Guo, et.al. Video cosegmentation for meaningful action extraction. IEEE ICCV 2013. [4] H. Wang, et.al. Action recognition with improved trajectories. IEEE ICCV 2013.

[5] J,Kennedy, et.al.,"Particle Swarm Optimization". IEEE ICNN 1995.

[6] R.Ofli et.al., Berkeley MHAD: A Comprehensive Multimodal Human Action Database. IEEE WACV 2013.

Temporal Action Co-Segmentation in 3D Motion Capture Data and Videos

Konstantinos Papoutsakis^{1,3}, Costas Panagiotakis^{2,3}, Antonis A. Argyros^{1,3}

PROPOSED FRAMEWORK

$$\frac{+c}{+1} \qquad p_i^* = \arg\min_p \left(O(pi) + \lambda \sum_{j=1}^{i-1} \Omega(pi, pj) \right)$$

- M	Datasets/Features/Info			#Pairs		#Common (per pair)		#Common (total)	
	MHAD101-s	3D sk	eletal	101		1-4		203	
taset	CMU86-91 [1]	3D skeletal		9	91 3		- 18	609	
-14-10	MHAD101-v	MBH HOF,	I,IDT HOG	101		1 - 4		203	
	80-pair [3]	MBH		8	0	1		80	
	Overlap scores %		3D skeletal		data Vi		deo data		
	Methods / Datasets		MHAD 101-s		CMU86 -91		MHAD 101-v		80- pair
	TCD [1] S-SDTW [2] U-SDTW [2] S-EVACO		08.	5 2		4.1 19.3		3	21.5
			35.9		16.1		37.7		21.6
			35.1		16.1		35.5		25.6
			59.4		57.5		56.2		64.5
n the	U-EVACO		50.3		51.0		45.9		54.2
CANTO.	Guo et.al [3]		_			-	_		51.6

<u>e online:</u>
'cvrl/evaco
a@ics.forth.gr
th.gr/~papoutsa/
ived funding from the
s Co4Robots, ACANTO

IEEE 2017 Conference on **Computer Vision and Pattern** Recognition

$$^{*} = \operatorname*{argmax}_{j \in \{1, \dots, K-1\}} \left| \frac{1}{j} \sum_{i=1}^{j} O(pi) - \frac{1}{K-j} \sum_{i=j+1}^{K} O(pi) \right|$$