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Overview

Empirical Study

End-to-end Fine-tuning &)

Problem .statement | | We summarize some of our findings and describe best practices: When using colorization pretraining, end-to-end fine-tuning is important Task: Downstream training without supervised pretraining
e [carning a general-purpose visual representation from unlabeled data _ —
I Model complexity Fine-tuned layers (VGG-16) Seg. (%mlU) with initialization: Rnd Col Cls itialization Architecture Classification  Segmentation
Motivation % o 36 365 608 mAP S
e Reducing reliance on costly data annotation, especially for new problem domains — Colorization facilitates scaling up model complexity fc6, fc7 JO00Om. - 426  63.1 [mageNet pretrained VOO-16 TV 6.9 60 7
conv4_1..fc7 OOOEEEE - H3.6 64.2 Random (onrs) AloxNot 16.9 T
- convl_1..fc7 EEEEEEE 35.1  56.0  66.5 i ORANE ' '
Solution 2 Loss . . . . . . Autoencoder (ours) AlexNet 53.3 28.7
. . L , o o , VOC 2012 semantic segmentation results with various configurations of fine-tuning _ ,
e Training a network for automatic image colorization from scratch — Histogram predictions are significantly better than regression o | | Random Pathak et al. (2016) AlexNet 53.3 19.8
e ImageNet pretraining (Cls) does well without fine-tuning | ~
e Use the trained network as a starting point for other visual tasks k-means Donahue et al. (2017) ) AlexNet 00.0 32.0
3 Training time e Colorization (Col) offers large improvement over random initialization (Rnd) k-means Krihenbiihl et al. (2016) ) VGQC-16 56.5 _
e However, colorization is most effective when fine-tuning end-to-end k-means [Kriahenbiihl et al. (2016) ) GoogleNet 55.0 :
Color . ) — Longer is better (does not plateau quickly, best model trained for 4 months) e The correlation between activations before and after downstream fine-tuning is shown below: [npainting Pathak ot al. (2016) ) AlexNet 56.5 20 7
O Orlzatlon as a Target Ta'S ) Lol BEm Colorization  mmm Classification Frame Order W&Hg and Gupta (2015) Ai.eXNet H&.7 -
4 Learning rate s BiGAN Donahue et al. (2017) AlexNet 60.1 35.2
0.8 - .. ;
e Work in automatic colorization uses feed-forward networks for per-pixel color predictions : L - - S Context Prediction Doersch et al. (2015)  AlexNet 65.3 -
— Important to drop during pretraining, even though downstream fine-tuning awaits = o q
Larsson et al. (2016); Zhang et al. (2016); lizuka et al. (2016) P P &P & 5 5 s Colorization Zhang et al. (2016) AlexNet 65.6 39.0
e We use the colorization model with hypercolumns from Larsson et al. (2016): . goer Colorization Larsson et al. (2016) VGG-16 ] 00).2
P (2016) o End-to-end fine-tuning on downstream task S 02~ Split-brain Zhang et al. (2017) AlexNet 67.1 36.0
VGG-16-Gray Hypercolumn Hue Ground:truth — Much more important for colorization pretraining than supervised pretraining 00 Teomil  comzl  com3l  convdl  convsl Jigsaw Noroozi and Favaro (2016) Modified AlexNet 03.0 ]
(fc7) conv o Our method AlexNet 65.9 38.4
(f¢6) conv6 1 J“IL e Features change signficantly more for colorization pretraining than classification pretraining VAG-16 (+FoV) 77 9 56.0
conv5_3 : ] ResNet-152 (+FoV) 77.3 60.0
Model Complexit & Loss
_ S P M @ @ Our ensemble 3X ResNet-152  (+FoV) 79.8 61.6
Chroma Feature Visualization : ' ' ] ' ini
Model complexity has significant impact We consider two different pretraining losses VO(,: Cqmparlson. Comparison with othe.r seli-supervised pretraining methods on VOC 2007
. . . Classification (test) and VOC 2012 Segmentation (val).
4 1158 +20.6 and evaluate their representation learning by N N
|““|| | T using the pretrained models for VOC 2012 Seg- Color nonspecific Color specitic Green: Current state-of-the-art that uses no additional labeled training data
. _ +9.1 mentation (val) fine-tuning
Q
Lightness § " 0.0 63.1 Pretraining Loss Seg. (YomlU)
' “ e | Regression 48.0 S Bonus: Re-visting supervised pr
Input: Grayscale Image Output: Color Image qistograms 59 0 '8
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Source: Larsson et al. (2016) The technique of predicting histograms turns = .
- . . . 8 Pretralnlng N Epochs Seg %mIU Example E30 3 randomly re- a881gned labels)
. | o o . Rnd Col Rnd Col Rnd Col out to drive better representation learning - '
Computer vision models are typically trained in a two-step process: pretraining and fine-tuning. AlexNet VGG-16 ResNet-159 8 None - - 35.1 0 0 0 D D D ‘ - ‘
L . . 'S
Recent methods of colorization also follow this paradigm: Random (Rnd) versus colorization (Col) initializa- @) CE-OOO 1.3M 80 66.5 \ /r / '%/ — & /
Step 1: Pretrain Classification —» Step 2: Fine-tune Colorization tion evaluated on small-sample ImageNet (100 per CfOOO L3M 2 620 Apple Pear Tangerine
C]&SS), evaluated on regular val (top—5, %) C1000 100k 20 o7 Example: H3 3 hierarchical label buckets)
C1000 10k 250 44 .4
E10 @i 1.3M 20 61.8 0 D ‘
Colorization as a Proxy Task Training Time €) & Learning Rate €t 3 ¢ E50  (065M) 1.3M 20 59.4 \ l / l / \ l /
v = H16 1.3M 20 00.0 Label #1 Label #2 Label #3
The steps can be reversed in order for colorization to benefit classification (or other visual tasks): Relationship between proxy loss (colorization) and down-  Pretraining times for VGG-16: 1 -F-Ef_:::. Lo H2 1.3M 20 46.1 Example: R3 (3 random label buckets)
: : ' ' R50 1.3M 20 57.3 VN dpm A -
Step 2: Fine-tune (lassification «+— Step 1: Pretrain (Colorization stream score (/mlU for semantic segmentation) Epochs (~4M) Seg. (YomlU) 1 1 sz*
e Long training helps (see tables —) W 0 o)
0 30.1 = R16 1.3M 20 42.6 \ % ')Qy l /
j j j j 3 52.9 Q
e Training from scratch, colorization results suffer only slightly although converges slower ® Dropping learning rate (dashed lines) improves results 10 6.0 - | - 40 03.0 Label 771 Label #2 Label #3
e This way of priming a network can be compared to unsupervised pretraining (e.g.. autoencoders) - T ' ol ImageNet pretraining variations. We evaluate how useful various modifications of Ima-
- yOLp 5 P P P 5\&d 2.0 BoRnEET e - o | g . T > = dBs=F geNet are for VOC 2012 Segmentation. We create new datasets either by reducing sample size or
e However, colorization is self-supervised and learns using a supervised loss on labeled pairs: _ Pretraining times for ResNet-152: TS ' N 7 s ~ 0 | by reducing the label space as described by the figure.
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e Colorization is a great proxy task since this task requires high-level visual understanding 2-3 J ~— 1” ;)g 28(1) e Y TRET Y = - M
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e [dea introduced by Larsson et al. (2016); Zhang et al. (2016) 22+ — - ' ' | - Y
| | | L - 00 os 1o 1s 20 25 30 10 *Issues training from scratch L o
e We extend this work with analysis and best practices, significantly raising state-of-the-art Epochs Examples of top activations (£fc7) of a colorization network
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