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Goal: Estimate 3D human pose from
a single color image

Two paradigms dominate this problem.
Reconstruction and discriminative approaches.

Two-step Reconstruction Approaches
2D pose estimation + optimization lifting 2D-to-3D
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Reconstruction Ambiguity!
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Discriminative Approaches ©9: ¢oordinate
regression
Estimate the 3D pose directly from the image.
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ConvNet 3D pose coordinates
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o Problem is highly non-linear.
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£ Mapping from images to 3D coordinates is hard to learn.
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= Underperforms compared to two-step approaches.

Volumetric representation for 3D human pose

Volumetric Output

Image ConvNet

We cast the problem as 3D keypoint localization.
We regress 3D heat maps of dimensions 64x64x64 for each joint.

Major advantages

ConvNets can naturally map from 2D images to 3D volumes.

The mapping can be achieved with a Fully Convolutional Network.

Rich output (64x64x64 for each joint). Useful for other tasks/postprocessing.

Coordinate Regression 112.41
Volume Regression (depth = 32) 92.23
Volume Regression (depth = 64)162 85.82

Average Error
Human3.6M (mm)

+ Allows us to train independently for the 2D and the 3D task.
+ We present compelling results for in-the-wild images.

This work
We attempt to bridge the gap!

We introduce the volumetric representation
for 3D human pose.

We use a coarse-to-fine prediction scheme & "¢

to deal with the excessive dimensionality.

We employ a decoupled architecture for
3D human pose estimation “in-the-wild”.

We achieve more than 30% relative error
reduction for standard benchmarks!

Coarse-to-Fine prediction

lterative estimation offers diminishing returns because of the excessive
dimensionality of our representation.

We do it in a coarse-to-fine way!

The resolution of the supervision volume increases gradually for the most
challenging z-dimension.
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Z-dimension:
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Versatility of volumetric representation

Regress 3D heatmaps using 2D heatmaps as input.

Decoupled
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- Uses only 2D joint locations and discards additional image evidence.
- When 2D estimates are wrong, 3D prediction can be lead astray.
- Underperforms compared to end-to-end approach.

Coarse-to-Fine

Average Error

Human3.6M (mm) 78.10 69.77

Training Code
Testing Code
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Quantitative results
Human3.6M
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Qualitative results
Human3.6M
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Decoupled vs Coarse-to-Fine
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