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Coarse-to-Fine Volumetric Prediction for Single-Image 3D Human Pose

Volumetric representation for 3D human poseGoal: Estimate 3D human pose from 
a single color image

Two paradigms dominate this problem.  
Reconstruction and discriminative approaches.

Two-step Reconstruction Approaches
2D pose estimation + optimization lifting 2D-to-3D

Image ConvNet 2D pose 3D pose

Optimization

Reconstruction Ambiguity!

Discriminative Approaches e.g.: coordinate  
regression

We cast the problem as 3D keypoint localization.
We regress 3D heat maps of dimensions 64x64x64 for each joint.

Image ConvNet Volumetric Output

Major advantages

Georgios Pavlakos, Xiaowei Zhou, Konstantinos G. Derpanis, Kostas Daniilidis

Coarse-to-Fine prediction
Iterative estimation offers diminishing returns because of the excessive 
dimensionality of our representation.

We do it in a coarse-to-fine way!

The resolution of the supervision volume increases gradually for the most 
challenging z-dimension.

Versatility of volumetric representation
Regress 3D heatmaps using 2D heatmaps as input.

+ Allows us to train independently for the 2D and the 3D task. 
+ We present compelling results for in-the-wild images.

2D Heatmaps

3D Heatmaps

- Uses only 2D joint locations and discards additional image evidence.
- When 2D estimates are wrong, 3D prediction can be lead astray.
- Underperforms compared to end-to-end approach.

Decoupled

Coarse-to-Fine

Coordinate Regression 112.41
Volume Regression (depth = 32) 92.23
Volume Regression (depth = 64) 85.82

Average Error 
Human3.6M (mm)

Naive Stacking Coarse-to-Fine
Two Hourglasses 80.14 69.77

Three Hourglasses 78.17 68.49
Four Hourglasses 75.06 64.76

Average Error 
Human3.6M (mm)

Decoupled Coarse-to-Fine
78.10 69.77

Average Error 
Human3.6M (mm)

Quantitative results
Human3.6M
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Mean per joint error (mm) Reconstruction error (mm)

Reconstruction error (mm) 3D PCP

This work
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Estimate the 3D pose directly from the image.
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Problem is highly non-linear.
Mapping from images to 3D coordinates is hard to learn.
Underperforms compared to two-step approaches.
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We attempt to bridge the gap!

We introduce the volumetric representation  
for 3D human pose.

We use a coarse-to-fine prediction scheme  
to deal with the excessive dimensionality.
 
We employ a decoupled architecture for 
3D human pose estimation ‘’in-the-wild’’.

We achieve more than 30% relative error 
reduction for standard benchmarks!

ConvNets can naturally map from 2D images to 3D volumes.

The mapping can be achieved with a Fully Convolutional Network.

Rich output (64x64x64 for each joint). Useful for other tasks/postprocessing.

z-dimension:

Qualitative results
Human3.6M
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Failure cases

Decoupled vs Coarse-to-Fine
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tinyurl.com/PoseVolumetric

Training Code
Testing Code
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