

An Efficient Algebraic Solution to the Perspective-Three-Point Problem
 Tong Ke and Stergios I. Roumeliotis
 Multiple Autonomous Robotic Systems (MARS) Lab - University of Minnesota

IEEE 2017 Conference on Computer Vision and Pattern Recognition

Introduction

- Camera position and orientation (pose) estimation based on known landmarks is used in numerous applications (e.g., VR/AR)

- Perspective-3-Point (P3P) Problem
- Estimate the 6 dof of camera pose from 3 3D-to-2D point correspondences
- Previous work
- Solving for the distances first:

Grunert (1841), Haralick et al. (1991), Gao et al. (2003)

- Solving for the camera's pose directly:
_ Kneip et al. (2011), Masselli and Zell (2014)

References

[1] L. Kneip, D. Scaramuzza, and R. Siegwart. A novel parametrization of the perspective[1] L. Kneip, D. Scaramuzza, and R. Siegwart. A novel parametrization of the perspectivetroc. of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2969-2976, Colorado Springs, CO, June 21-25 2011.
${ }^{[2]}$ A. Masselli and A. Zell. A new geometric approach for faster solving the perspective-threepoint problem. In Proc. of the IEEE International Conference on Pattern Recognition, pages 2119-2124, Stockholm, Sweden, Aug. 24-28 2014
[3] X.-S. Gao, X.-R. Hou, J. Tang, and H.-F. Cheng. Complete solution classification for the Intelligence, 25(8):930-943, 2003.
[4] J.A. Grunert. Das pothenotische problem in erweiterter gestalt nebst über seine anwendungen in der geodäsie. Grunerts archiv für mathematik und physik, 1:238-248, 1841.

Acknowledgements

This work was supported by the National Science Foundation (IIS-1328722)

Proposed P3P Approach

- Step 1: Eliminate position $\mathbf{p}_{i}-\mathbf{p}_{j}={ }_{C}^{G} \mathbf{C}\left(d_{i} \mathbf{b}_{i}-d_{j} \mathbf{b}_{j}\right)$
- Step 2: Eliminate distances $\left(\mathbf{p}_{i}-\mathbf{p}_{j}\right)_{C}^{T G} \mathbf{C}\left(\mathbf{b}_{i} \times \mathbf{b}_{j}\right)=0$

Step 3: Describe the rotation matrix as

$$
\begin{aligned}
& { }_{C}^{G} \mathbf{C}=\mathbf{C}\left(\mathbf{k}_{1}, \theta_{1}\right) \mathbf{C}\left(\mathbf{k}_{2}, \theta_{2}\right) \mathbf{C}\left(\mathbf{k}_{3}, \theta_{3}\right) \\
& \mathbf{k}_{1} \triangleq \mathbf{p}_{1}-\mathbf{p}_{2} \mathbf{k}_{0} \triangleq \mathbf{b}_{1} \times \mathbf{b}_{2}
\end{aligned}{ }^{G} \mathbf{k}_{i} \triangleq{ }^{G} \mathbf{k}_{1} \times \mathbf{k}_{3}{ }^{G} \mathbf{p}_{C}+d_{i C}^{G} \mathbf{C}^{C} \mathbf{b}_{i}, i=1,2,3
$$

$$
\mathbf{k}_{1} \triangleq \frac{\mathbf{p}_{1}-\mathbf{p}_{2}}{\left\|\mathbf{p}_{1}-\mathbf{p}_{2}\right\|}, \mathbf{k}_{3} \triangleq \frac{\mathbf{b}_{1} \times \mathbf{b}_{2}}{\left\|\mathbf{b}_{1} \times \mathbf{b}_{2}\right\|}, \mathbf{k}_{2} \triangleq \frac{\mathbf{k}_{1} \times \mathbf{k}_{3}}{\left\|\mathbf{k}_{1} \times \mathbf{k}_{3}\right\|}
$$

- Step 4: Determine 1 dof of rotation $\mathbf{k}_{1}^{T G} \mathbf{C k}_{3}=0$
$\Rightarrow \mathbf{k}_{1}^{T} \mathbf{C}\left(\mathbf{k}_{1}, \theta_{1}\right) \mathbf{C}\left(\mathbf{k}_{2}, \theta_{2}\right) \mathbf{C}\left(\mathbf{k}_{3}, \theta_{3}\right) \mathbf{k}_{3}=0$
$\Rightarrow \mathbf{k}_{1}^{T} \mathbf{C}\left(\mathbf{k}_{2}, \theta_{2}\right) \mathbf{k}_{3}=0 \Rightarrow \theta_{2}=\arccos \left(\mathbf{k}_{1}^{T} \mathbf{k}_{3}\right)-\frac{\pi}{2}$
- Step 5: Substitute θ_{2} back to the other 2 equations

$\left(\mathbf{k}_{3}^{\prime T} \mathbf{v}_{i}^{\prime}\right)\left[\mathbf{u}_{i}^{T}\left\lfloor\mathbf{k}_{1}\right\rfloor\left[\mathbf{k}_{3}^{\prime}\right\rfloor \mathbf{k}_{1} \quad \mathbf{u}_{i}^{T}\left\lfloor\mathbf{k}_{1}\right\rfloor \mathbf{k}_{3}^{\prime}\right]\left[\begin{array}{c}\cos \theta_{1} \\ \sin \theta_{1}\end{array}\right]$
$\mathbf{u}_{i} \triangleq \mathbf{p}_{i}-\mathbf{p}_{3}, \mathbf{v}_{i} \triangleq \mathbf{b}_{i} \times \mathbf{b}_{3}, \mathbf{v}_{i}^{\prime} \triangleq \mathbf{C}\left(\mathbf{k}_{2}, \theta_{2}\right) \mathbf{v}_{i}, i=1,2$
$\mathbf{k}_{3}^{\prime} \triangleq \mathbf{C}\left(\mathbf{k}_{2}, \theta_{2}\right), \mathbf{k}_{3}=\mathbf{k}_{2} \times \mathbf{k}_{1}$
- Step 6: Change of variables
$\theta_{1}^{\prime} \triangleq \theta_{1}-\phi, \mathbf{v}_{i}^{\prime \prime} \triangleq \mathbf{C}\left(\mathbf{k}_{1}, \phi\right) \mathbf{v}_{i}^{\prime}, \mathbf{k}_{3}^{\prime \prime} \triangleq \mathbf{C}\left(\mathbf{k}_{1}, \phi\right) \mathbf{k}_{3}^{\prime}, \phi=\operatorname{atan} 2\left(\mathbf{u}_{1}^{T} \mathbf{k}_{3}^{\prime}, \mathbf{u}_{1}^{T} \mathbf{k}_{2}\right)$
- Step 7: Rewrite (1) as

$$
\left[\begin{array}{c}
\cos \theta_{1}^{\prime} \\
\sin \theta_{1}^{\prime}
\end{array}\right]^{T}\left[\begin{array}{cc}
{\left[\mathbf{u}_{i}^{T}\left\lfloor\mathbf{k}_{1}\right]^{2}\left[\mathbf{k}_{3}^{\prime \prime}\right]^{2} \mathbf{v}_{i}^{\prime \prime}\right.} & \mathbf{u}_{i}^{T}\left\lfloor\mathbf{k}_{1}\right]^{2}\left[\mathbf{k}_{3}^{\prime \prime}\right]_{i}^{\prime \prime}
\end{array}\right]\left[\begin{array}{c}
\cos \theta_{3} \\
\sin \theta_{3}
\end{array}\right]+\left(\mathbf{k}_{1}^{T} \mathbf{u}_{i}\right)\left[-\mathbf{k}_{1}^{T}\left[\mathbf{k}_{3}^{\prime \prime}\right]^{2} \mathbf{v}_{i}^{\prime \prime} \quad-\mathbf{k}_{1}^{T}\left[\mathbf{k}_{3}^{\prime \prime}\right] \mathbf{v}_{i}^{\prime \prime}\right]\left[\begin{array}{c}
\cos \theta_{3} \\
\sin \theta_{3}
\end{array}\right]=
$$

$$
\left(\mathbf{k}_{3}^{\prime \prime T} \mathbf{v}_{i}^{\prime \prime}\right)\left[\begin{array}{ll}
0 & \left.\mathbf{u}_{i}^{T}\left[\mathbf{k}_{1}\right] \mathbf{k}_{3}^{\prime \prime}\right]
\end{array}\right]\left[\begin{array}{c}
\cos \theta_{1}^{\prime} \tag{}\\
\sin \theta_{1}^{1}
\end{array}\right]
$$

- Step 8: Use (3) to eliminate θ_{3} in (2) to get a quadratic eq. of $\cos \theta_{1}^{\prime}, \sin \theta_{1}^{\prime}$ $\cos \theta_{3}^{2}+\sin \theta_{3}^{2}=1$
- Step 9: Eliminate $\sin \theta_{1}^{\prime}$ to get a quartic equation of $\cos \theta_{1}^{\prime}$
- Step 10: Solve the quartic eq. and back substitute to recover ${ }_{C}^{G} \mathbf{C},{ }^{G} \mathbf{p}_{C}$

Results

- Processing cost (on a 2.0 GHz 4 Core laptop)

Kneip et al	Masselli and Zell	Proposed
$1.3 \mu \mathrm{~s}$	$1.5 \mu \mathrm{~s}$	$\mathbf{0 . 5 1} \boldsymbol{\mu \mathrm { s }}$

- Numerical accuracy (under nominal cond.s)

Method	Position Error
Gao et al.	$6.36 \mathrm{E}-05$
Kneip et al.	$1.18 \mathrm{E}-05$
Masselli and Zell	$1.84 \mathrm{E}-08$
Proposed	$\mathbf{1 . 6 6 E - 1 0}$

- Robustness 1: Points are almost collinear

Method	Position Error
Kneip et al.	$1.42 \mathrm{E}-14$
Masselli and Zell	$7.24 \mathrm{E}-15$
Proposed	$5.16 \mathrm{E}-15$

Robustness 2: 2 bearing meas/nts are close

Conclusions

3x faster than Kneip's et al

- 3 orders of magnitude more accurate than Masselli and Zell under nominal conditions
- More robust than Masselli and Zell in close-to-singular conditions

