IEEE 2017 Conference on
Computer Vision and Pattern
Recognition

Low-Rank-Sparse Subspace Representation for Robust Regression

Yongqgiang'!, Daming’-2, Junbin3, Dansong’
1 Harbin Institute of Technology; 2 Shenzhen University; 3 The University of Sydney

'S o . .
262017

Experiments:
» Synthetic Data
RAE and its standard deviation on synthetic data

Methods:

» We propose a low-rank-sparse subspace representation for robust
regression by learning a clean dictionary-the basis for subspaces-
that satisfies the condition of sparse noise:

Problem:

» The current methods have studied low-rank regression models that
are robust against typical noises (like Gaussian noise and out-
sample sparse noise) or outliers. However, few of them can handle

the outliers/noise lying on the sparsely corrupted disjoint subspaces. y Method RAET RAEy
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» CMU PIE Database for Pose Estimation
Comparison of yaw angle error and standard deviation

st. X=AZ+E, D=[AZ;1"],Z=J,J>0.

Y: dependent variables; X: independent variables; T: the mapping
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Figure 2. Convergence result on Synthetic
Data.




