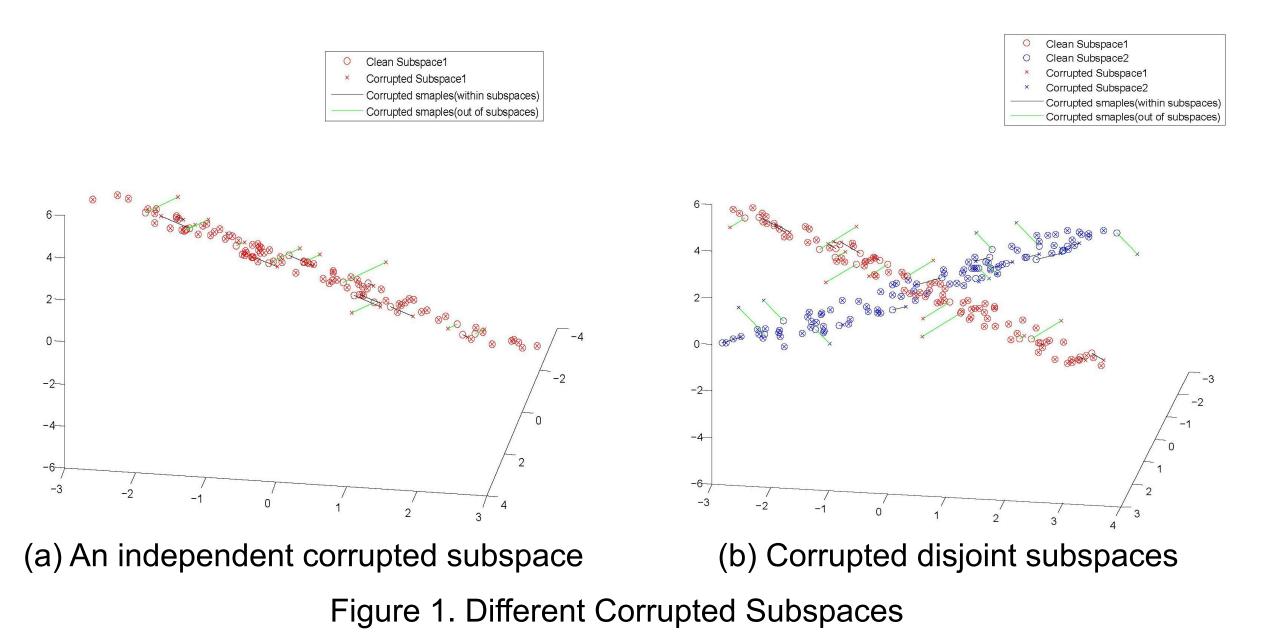


Problem:

The current methods have studied low-rank regression models that are robust against typical noises (like Gaussian noise and outsample sparse noise) or outliers. However, few of them can handle the outliers/noise lying on the sparsely corrupted disjoint subspaces.



> As shown in Fig. 1, In case (a), current low-rank robust regression (LR-RR) works well; In case (b), it tends to fail.

Contribution:

- Unlike most of the existing regression methods, we propose an approach with two phases of low-rank-sparse subspace recovery and regression optimization being carried out simultaneously.
- > We also apply the linearized alternating direction method with adaptive penalty to solved the formulated LRS-RR problem and prove the convergence of the algorithm and analyze its complexity.
- \succ We demonstrate the efficiency of our method for the highdimensional corrupted data on both synthetic data and two benchmark datasets against several state-of-the-art robust methods.

Low-Rank-Sparse Subspace Representation for Robust Regression Yongqiang¹, Daming^{1,2}, Junbin³, Dansong¹ 1 Harbin Institute of Technology; 2 Shenzhen University; 3 The University of Sydney

Methods:

We propose a low-rank-sparse subspace representation for robust regression by learning a clean dictionary-the basis for subspacesthat satisfies the condition of sparse noise:

$$\hat{\mathscr{J}}_{LRS-RR} = \min_{\mathbf{T}, \hat{\mathbf{D}}, \mathbf{A}, \mathbf{Z}, \mathbf{J}, \mathbf{E}} \frac{\eta}{2} \left\| \mathbf{W} (\mathbf{Y} - \mathbf{T} \hat{\mathbf{D}}) \right\|_{F}^{2} + \left\| \mathbf{A} \right\|_{*} \\ + \left\| \mathbf{Z} \right\|_{*} + \lambda_{2} \left\| \mathbf{J} \right\|_{1} + \lambda_{1} \left\| \mathbf{E} \right\|_{1} \\ \text{s.t. } \mathbf{X} = \mathbf{A} \mathbf{Z} + \mathbf{E}, \ \hat{\mathbf{D}} = \begin{bmatrix} \mathbf{A} \mathbf{Z}; \mathbf{1}^{\mathbf{T}} \end{bmatrix}, \ \mathbf{Z} = \mathbf{J}, \mathbf{J} \ge \mathbf{0}.$$

- Y: dependent variables; X: independent variables; T: the mapping
- A: dictionary; Z: low-rank-sparse coefficients; D : cleaned samples
- **E**: sparse noise; **J**: non-negative sparse constraint for **Z**
- We solve it by the LADMAP method.

Convergence and Complexity:

- \succ It is solved iteratively via the four subproblems:
 - 2 least square(**T**; **D**)
 - 2 low-rank (**A**, **E**; **Z**, **J**)
- Low-rank subproblems converge to a KKT point.
- \succ In the iterations of subproblems, the computational costs are mainly matrix inversion and SVT.

Fig. 2 gives the plots of relative Frobenius norm errors of **D** and **E** varying with iteration number.

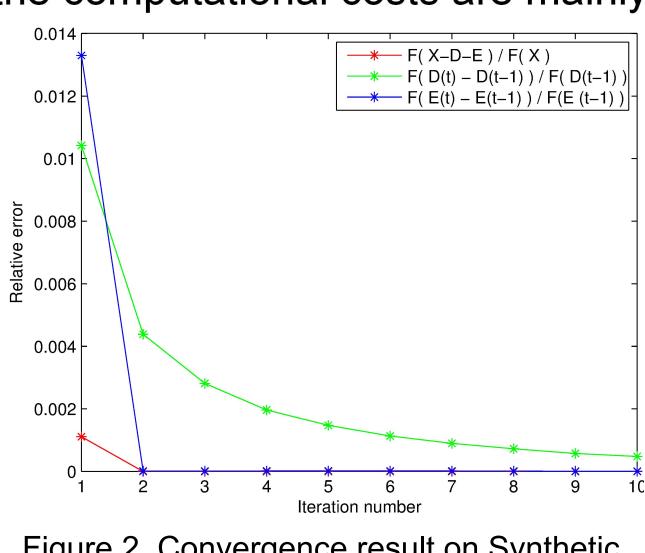


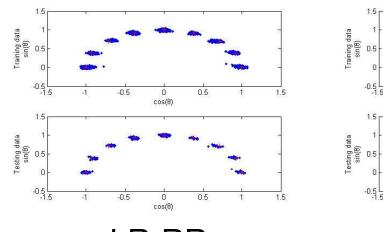
Figure 2. Convergence result on Synthetic Data.

Experiments:

Synthetic Data RAE and its standard deviation on synthetic data

Method	$RAE_{\mathbf{T}}$	$RAE_{\mathbf{Y}}$
LSR	0.269 ± 0.121	0.035 ± 0.012
RANSAC	0.256 ± 0.133	0.036 ± 0.013
RPCA+LSR	0.464 ± 0.030	0.051 ± 0.006
LR-RR	0.035 ± 0.015	0.015 ± 0.006
LRS-RR	$0.005\pm0.0005^{ }$	0.011 ± 0.003

CMU PIE Database for Pose Estimation



LRS-RR

Models errors & Fitting errors

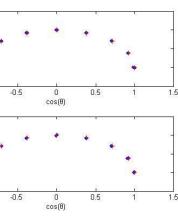


Conclusions and Future Work:

- model in this complex situation.
- will be parallelized in the future.

IEEE 2017 Conference on **Computer Vision and Pattern** Recognition

Comparison of yaw angle error and standard deviation



Aethod	Pose Angle Err	Time(s)
LSR	$27.56^{\circ} \pm 23.60^{\circ}$	0.05
RANSAC	$23.20^{o} \pm 20.39^{o}$	0.22
RPCA+LSR	$20.45^{o} \pm 19.51^{o}$	0.25
LR-RR	$1.97^{o} \pm 5.77^{o}$	3.03
LRS-RR	$1.03^{\mathbf{o}}\pm5.65^{\mathbf{o}}$	10.02

YaleB Database for Reconstruction of Corrupted Faces

Method	Model Err	Fitting Err
RANSAC	1.058 ± 0.040	0.185 ± 0.007
RPCA+LSR	1.075 ± 0.051	0.187 ± 0.007
LR-RR	1.069 ± 0.044	0.185 ± 0.006
LRS-RR	1.045 ± 0.049	0.164 ± 0.006

Our method can deal with outliers/noise inside or outside the disjoint subspaces, and can obtain much more exact regression

The current LRS-RR is time-consuming, the optimization algorithm