Supplementary Material

Joint Discriminative Bayesian Dictionary and Classifier Learning

1 Joint probability distribution

According to the proposed model, the joint probability distribution over the data of the c^{th} class can be expressed as:

$$P(\{y_i^c\}, \{h_i^c\}, \Phi, \Psi, \{z_i^c\}, \{s_i^c\}, \{t_i^c\}, \{\pi_k^c\}, \lambda_y^c, \lambda_t^c, \lambda_y, \lambda_h) =$$

$$\prod_{i=1}^{\left|\mathcal{I}_c\right|} \mathcal{N}(y_i^c|\Phi(z_i^c \odot s_i^c), 1/\lambda_{y_o}I_L) \text{Gam}(\lambda_y|\epsilon_o, f_o) \mathcal{N}(h_i^c|\Psi(z_i^c \odot t_i^c), 1/\lambda_{h_o}I_C) \text{Gam}(\lambda_h|\epsilon_o, f_o)$$

$$\prod_{k=1}^{\left|\mathcal{K}\right|} \mathcal{N}(\varphi_k^c|0, 1/\lambda_{\varphi_o}I_K) \mathcal{N}(\psi_k^c|0, 1/\lambda_{\psi_o}I_C)$$

$$\prod_{i=1}^{\left|\mathcal{I}_c\right|} \prod_{k=1}^{\left|\mathcal{K}\right|} \text{Bernoulli}(z_{ik}^c|\pi_{k_o}^c) \text{Beta}(\pi_k^c a_o, b_o(K - 1))$$

$$\prod_{k=1}^{\left|\mathcal{K}\right|} \mathcal{N}(s_k^c|0, 1/\lambda_{s_o}I_{|\mathcal{K}|}) \text{Gam}(\lambda_s^c|c_o, d_o) \mathcal{N}(t_k^c|0, 1/\lambda_{t_o}I_{|\mathcal{K}|}) \text{Gam}(\lambda_t^c|c_o, d_o).$$

2 Gibbs sampling equations

We have made use of the following theorem [1] while deriving the Gibbs Sampling equations for our model:

Theorem 1 [1]: If prior probability over y_1 is given as $p(y_1) = \mathcal{N}(y_1|\mu_o, \Lambda_o^{-1})$ and the likelihood function is defined as $p(y_2|y_1) = \mathcal{N}(y_2|Ay_1 + b, L^{-1})$, then the posterior probability distribution over y_1 can be written as $p(y_1|y_2) = \mathcal{N}(y_1|\mu, \Lambda^{-1})$, where:

$$\Lambda = \Lambda_o + A^T L A$$

$$\mu = \Lambda^{-1}(A^T L (y - b) + \Lambda_o \mu_o).$$

Below, we derive the sampling equations. The sampling is performed in our approach in an iterative manner. The sampling sequence is the same as the sequence of the equations given below.

Sample φ_k: According to the proposed model, we can write the posterior distribution over the k^{th} dictionary atom $p(\varphi_k|\cdot)$ as follows:

$$p(\varphi_k|\cdot) \propto \prod_{i=1}^{N} \mathcal{N}(y_i|\Phi(z_i \odot s_i), \lambda_{y_o}^{-1}I_L) \mathcal{N}(\varphi_k|0, \lambda_{\varphi_o}^{-1}I_K).$$

We can write the mean of the likelihood function in terms of φ_k as:

$$y_{i\varphi_k} = y_i - \Phi(z_i \odot s_i) + \varphi_k(z_{ik} \odot s_{ik}).$$
where \(\mathbf{y}_{i\varphi} \) denotes the contribution of the \(k \)th dictionary atom in approximating \(\mathbf{y}_i \). Hence, the posterior distribution over \(\varphi_k \) can be re-written as:

\[
p(\varphi_k|\cdot) \propto \prod_{i=1}^{N} \mathcal{N}(\mathbf{y}_{i\varphi_k}|\varphi_k(z_{ik}s_{ik}), \lambda_{y_o}^{-1}\mathbf{I}_L) \mathcal{N}(\varphi_k|0, \lambda_{\varphi_o}^{-1}\mathbf{I}_L).
\]

Exploiting the results of Theorem 1, the posterior over the dictionary atoms can be expressed as:

\[
p(\varphi_k|\cdot) = \mathcal{N}(\varphi_k|\mu_k, \lambda_{\varphi}^{-1}\mathbf{I}_L),
\]

where,

\[
\lambda_{\varphi} = \lambda_{\varphi_o} + \lambda_{y_o} \sum_{i=1}^{N} (z_{ik}s_{ik})^2, \quad \mu_k = \lambda_{y_o} \lambda_{\varphi}^{-1} \sum_{i=1}^{N} (z_{ik}s_{ik}) \mathbf{y}_{i\varphi_k}.
\]

We have arrived at the above expressions by placing \(\mathbf{A} = \sum_{i=1}^{N} (z_{ik}s_{ik}) \) and \(\mathbf{b} = \mathbf{0} \) in the results of Theorem 1. Note that, we have intentionally dropped the super-script ‘c’ from the above expressions. This is because, the dictionary atoms are updated using the training data of all the classes simultaneously. The same is true for updating the columns \(\psi_k \) of the classifier \(\mathbf{\Psi} \).

Sample \(\psi_k \): The posterior distribution \(p(\psi_k|\cdot) \) over the \(k \)th column of \(\mathbf{\Psi} \) can be written as:

\[
p(\psi_k|\cdot) \propto \prod_{i=1}^{N} \mathcal{N}(\mathbf{h}_i|\Psi(z_i \odot t_i), \lambda_{h_o}^{-1}\mathbf{I}_C) \mathcal{N}(\psi_k|0, \lambda_{\psi_o}^{-1}\mathbf{I}_C).
\]

With the same reasoning as for sampling \(\varphi_k \), we can sample \(\psi_k \) from \(p(\psi_k|\cdot) = \mathcal{N}(\psi_k|\mu_k, \lambda_{\psi}^{-1}\mathbf{I}_C) \), where

\[
\lambda_{\psi} = \lambda_{\psi_o} + \lambda_{h_o} \sum_{i=1}^{N} (z_{ik}t_{ik})^2, \quad \mu_k = \lambda_{h_o} \lambda_{\psi}^{-1} \sum_{i=1}^{N} (z_{ik}t_{ik}) \mathbf{h}_{i\psi_k}.
\]

Sample \(z_{ik} \): Once the dictionary and the classifier have been sampled, we must sample \(z_{ik} \) based on the updated dictionary and the classifier. The posterior probability distribution over \(z_{ik} \) can be expressed as, \(\forall i \in \mathbf{I}_c, \forall k \in \mathbf{K}: \)

\[
p(z_{ik}^c|\cdot) \propto \mathcal{N}(\mathbf{y}_{i\varphi_k}^c|\varphi_k(z_{ik}^e s_{ik}^e), \lambda_{y_o}^{-1}\mathbf{I}_L) \mathcal{N}(\mathbf{h}_{i\psi_k}^c|\psi_k(z_{ik}^e t_{ik}^e), \lambda_{h_o}^{-1}\mathbf{I}_C) \text{ Bernoulli}(z_{ik}^c|\pi_k^c).
\]

It is straightforward to show that based on the above mentioned posterior

\[
p(z_{ik}^c = 1|\cdot) \propto \pi_{k_o} \exp \left(-\frac{(\mathbf{y}_{i\varphi_k}^c - \varphi_k s_{ik}^e)^\top \lambda_{y_o} \mathbf{I}_L (\mathbf{y}_{i\varphi_k}^c - \varphi_k s_{ik}^e)}{2} \right) \exp \left(-\frac{(\mathbf{h}_{i\psi_k}^c - \psi_k t_{ik}^e)^\top \lambda_{h_o} \mathbf{I}_C (\mathbf{h}_{i\psi_k}^c - \psi_k t_{ik}^e)}{2} \right)
\]

\[
\propto \pi_{k_o} \exp \left(-\frac{\lambda_{y_o} s_{ik}^e^\top s_{ik}^e}{2} \right) \exp \left(-\frac{\lambda_{h_o} (\varphi_k^\top \varphi_k s_{ik}^e s_{ik}^e - 2 s_{ik}^e \mathbf{y}_{i\varphi_k}^c \varphi_k)}{2} \right)
\]

\[
= \pi_{k_o} \exp \left(-\frac{\lambda_{h_o}}{2} \mathbf{h}_{i\psi_k}^\top \mathbf{h}_{i\psi_k} \right) \exp \left(-\frac{\lambda_{h_o}}{2} (\psi_k^\top \psi_k s_{ik}^e s_{ik}^e - 2 t_{ik}^e \mathbf{h}_{i\psi_k}^\top \psi_k) \right).
\]
Let $p_1 = \pi^c_{k_o} \pi_2 \pi_3 \pi_4$. We can derive an expression for $p(z^c_{ik} = 0|\cdot)$ in a similar fashion, that comes out to be:

$$p(z^c_{ik} = 0|\cdot) \propto (1 - \pi^c_{k_o}) \exp \left(- \frac{\lambda_{y_o} y^c_{i_{\psi_k}}}{2} \right) \cdot \exp \left(- \frac{\lambda_{h_o} h^c_{i_{\psi_k}}}{2} \right).$$

Let $p_o = (1 - \pi^c_{k_o}) \pi_1 \pi_3$. Using p_1 and p_o, z^c_{ik} can be sampled from the following normalized Bernoulli distribution:

$$z^c_{ik} \sim \text{Bernoulli} \left(\frac{p_1}{p_1 + p_0} \right).$$

Simplifying further:

$$z^c_{ik} \sim \text{Bernoulli} \left(\frac{\pi^c_{k_o} \xi}{1 - \pi^c_{k_o} + \xi \pi^c_{k_o}} \right),$$

where, $\xi = \pi_2 \pi_3$.

Sample s^c_{ik}: We can write the following regarding the posterior probability distribution over s^c_{ik}:

$$p(s^c_{ik}|\cdot) \propto \mathcal{N}(y^c_{i_{\psi_k}}|\varphi_k(z^c_{ik}, s^c_{ik}), \lambda_{y_o} I_L) \mathcal{N}(s^c_{ik}|0, \lambda_{s_o}^{-1}).$$

Exploiting the results of Theorem 1, s^c_{ik} can be sampled from $\mathcal{N}(s^c_{ik}|\mu_s, \lambda_s^{-1})$, where:

$$\lambda_s = \lambda_{s_o} + (\varphi_k z^c_{ik})^\top \lambda_{y_o} I_L (\varphi_k z^c_{ik}) = \lambda_{s_o} + \lambda_{y_o} z^c_{ik} \varphi_k \varphi_k^\top,$$

$$\mu_s = \lambda_s^{-1} (\varphi_k z^c_{ik})^\top \lambda_{y_o} I_L y^c_{i_{\psi_k}} = \lambda_s^{-1} \lambda_{y_o} z^c_{ik} \varphi_k y^c_{i_{\psi_k}}.$$

Sample t^c_{ik}: Using the same reasoning as for s^c_{ik}, we can sample t^c_{ik} from $\mathcal{N}(t^c_{ik}|\mu_t, \lambda_t^{-1})$, where:

$$\lambda_t = \lambda_{t_o} + \lambda_{h_o} z^c_{ik} \psi_k^\top \psi_k,$$

$$\mu_t = \lambda_t^{-1} \lambda_{h_o} z^c_{ik} \psi_k^\top h^c_{i_{\psi_k}}.$$

Sample π_k: We can write the posterior distribution over π_k as follows:

$$p(\pi^c_k|\cdot) \propto \prod_{i \in I_c} \text{Bernoulli}(z^c_{ik}|\pi^c_{k_o}) \text{Beta}(\pi^c_{k_o}|a_o/K, b_o(K - 1)/K),$$

$$= \prod_{i \in I_c} \frac{z^c_{ik}}{1 - \pi^c_{k_o}} \times \frac{a_o}{\pi^c_{k_o}} \times \frac{b_o(K - 1)}{K - 1},$$

$$= \prod_{i \in I_c} \frac{\pi^c_{k_o}}{1 - \pi^c_{k_o}} \times \frac{b_o(K - 1)}{K} + |I_c| - \sum_{i = 1}^{|I_c|} z^c_{ik},$$

$$= \text{Beta} \left(\frac{a_o}{K} + \sum_{i = 1}^{|I_c|} \frac{b_o(K - 1)}{K}, b_o(K - 1)/K + |I_c| - \sum_{i = 1}^{|I_c|} z^c_{ik} \right).$$

Thus, we sample π^c_k from the above mentioned Beta probability distribution. Note that, in the above derivation we wrote π^c_k as π_k for readability only.
Sample λ_s^c: To compute λ_s^c, we treat s_{ik}^c for all the dictionary atoms simultaneously (we do the same for λ_t^c below). We consider $s_{ik}^c \in \mathbb{R}^K$ to be a sample of a Gaussian distribution with isotropic precision. This simplification allows us to efficiently infer the posterior distribution over λ_s^c without significantly compromising the performance of our approach. The posterior distribution over λ_s^c can be expressed as:

$$
p(\lambda_s^c|\cdot) \propto \prod_{i \in I_c} \mathcal{N}(s_{ik}^c|0, 1/\lambda_s^c_{ik} |K|) \text{Gam}(\lambda_s^c|c_o, d_o)
$$

where $\text{Gam}(\cdot)$ is the well-known gamma function and $\text{det}(\cdot)$ denotes the determinant of a matrix. Neglecting the constants in the right hand side of the above equation, and making use of the property $\text{det}(\lambda I_{|K|}) = \lambda^{|K|}$:

$$
p(\lambda_s^c|\cdot) \propto \lambda_s^c^{(|I_c|\cdot|K|)/2} \exp\left(-\frac{\lambda_s^c}{2} \sum_{i=1}^{|I_c|} s_{ik}^c s_{ik}^c\right) \lambda_s^{c_o - 1} \exp(-d_o \lambda_s^c)
$$

$$
= \lambda_s^{c_o - 1} \exp\left(-\frac{\lambda_s^c}{2} \sum_{i=1}^{|I_c|} s_{ik}^c s_{ik}^c + d_o\right)
$$

$$
\propto \text{Gam}\left(\frac{|I_c||K|}{2} + c_o, \frac{1}{2} \sum_{i=1}^{|I_c|} s_{ik}^c s_{ik}^c + d_o\right).
$$

Therefore, we sample λ_s^c as:

$$
\lambda_s^c \sim \text{Gam}\left(\frac{|I_c||K|}{2} + c_o, \frac{1}{2} \sum_{i=1}^{|I_c|} s_{ik}^c s_{ik}^c + d_o\right),
$$

where $\|\cdot\|_2$ denotes the ℓ_2-norm of a vector.

Sample λ_t^c: Similarly, we can sample λ_t^c from the following Gamma probability distribution:

$$
\lambda_t^c \sim \text{Gam}\left(\frac{|I_t||K|}{2} + c_o, \frac{1}{2} \sum_{i=1}^{|I_t|} t_{ik}^c t_{ik}^c + d_o\right).
$$

Sample λ_y: The posterior over λ_y can be written as:

$$
p(\lambda_y|\cdot) \propto \prod_{i=1}^N \mathcal{N}(y_i|\Phi(z_i \odot s_i), \lambda^{-1}_{y_o} I_L) \text{Gam}(\lambda_y|e_o, f_o).
$$

Again, we have intentionally dropped the superscript 'c' because the computation is performed over the training data of all classes simultaneously. Following similar steps as in the derivations for λ_s^c and λ_t^c we can show that λ_y must be sampled as follows:

$$
\lambda_y \sim \text{Gam}\left(\frac{LN}{2} + e_o, \frac{1}{2} \sum_{i=1}^N \|y_i - \Phi(z_i \odot s_i)\|_2^2 + f_o\right).
$$

Sample λ_h: Correspondingly, λ_h can be sampled as the following:

$$
\lambda_h \sim \text{Gam}\left(\frac{CN}{2} + e_o, \frac{1}{2} \sum_{i=1}^N \|h_i - \Psi(z_i \odot t_i)\|_2^2 + f_o\right).
$$
References