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In this appendix we present additional experimental results
that provide details that are out of the scope of the main
paper.

1. Subframe synchronization

One issue that was not directly elaborated upon in the main
paper is the ability of the solvers to synchronize sub-frame
time shifts, i.e., shifts where βgt is not an integer. In the real
datasets, images were either hardware synchronized, i.e.,
βgt = 0, or we did not have precise enough ground truth
information about the subframe time shift. Therefore, we
tested the subframe synchronization on the synthetic data
only. The results in Figure 1 show that the subframe syn-
chronization is very precise for various levels of noise. Fig-
ure 2 shows an example of a randomly generated scene for
the synthetic experiments.

2. Iterative algorithm visualization

In Figure 3, we provide a visualization of one run of the it-
erative algorithm with pmax = 5. Each iteration is marked
by a black square and denoted by the number of the itera-
tion k and the distance d used for interpolation in the given
iteration. The algorithm greedily searches for a larger num-
ber of inliers (the top figure) and uses the estimated βk to
change the correspondences, which results in change of the
current ground truth shift (bottom figure). This particular
run converged in 6 iterations, even though the initial time
shift (50) was larger than the maximum interpolation dis-
tance d = 32. Moreover, the algorithm only used interpo-
lation distances d = 1, 2. These distances were enough to
provide a good enough estimate of the time shift that lead
to an increased number of inliers.
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Figure 1. Subframe time shift estimation using the fundamental
matrix solver. The solver was tested with different levels of image
noise.
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Figure 2. An example of the randomly generated scene for the syn-
thetic experiments. On the left is the 3D trajectory with cameras
and on the right is an image projected into one of the cameras.

3. Accuracy of the estimated geometry

3.1. Synthetic data

On the same data as used in Section 5.1 of the main paper,
we evaluated the estimated relative rotations R and transla-
tions t. The results in Figure 4 show that we are able to es-
timate R and t significantly better than the classical 7 point
algorithm. The utility of our solver is especially apparent
from the zoomed in figures with smaller time shifts. The er-
ror in R and t is almost zero up to 5 frames shift, for shorter
interpolation distances d = 1, 2, 4, 8. In contrast, such shift
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Figure 3. An example of one run of the iterative algorithm. k is the iteration number and d is the interpolation distance used. Beginning
with time shift of 50 frames, the algorithm would converge in 6 iterations.

causes a significant drop in performance of the classical 7-
point algorithm, resulting in errors up to 5 degrees in orien-
tation and relative error of 5% in the translation vector.

Even for the long interpolation distances d = 16, 32—
although not as good as for d = 1, 2, 4, 8—the performance
is still better than that of the classical 7-point algorithm.
The performance of d = 16 and d = 32 improves with in-
creasing ground truth time shift and peaks, as expected, on
time shifts 16 and 32, respectively. Note that in our iterative
algorithm, we only use the right hand side of the results in
the above graphs, because both d and −d are used at each
iteration.

3.2. Real data

The only real world dataset used for the main paper ex-
periments for which the ground truth spatial calibration is
provided is the UvA dataset. We extracted the ground truth
relative Rgt and tgt from the dataset camera matrices and
compared them to the values estimated by all algorithms.
Figure 5 shows the angular error of R, measured as the ro-
tation angle of Rerr = R>Rgt, and the relative translation
error measured as ||tgt − t||, where both tgt and t are nor-
malized to unit lengths. Errors are averaged over 100 runs
for each datapoint.
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Figure 4. Error in the relative rotation and translation between the two cameras from synthetic data extracted from the computed funda-
mental matrix. Our solvers provide significantly better rotation and translation estimates than the classic 7-point algorithm. Note that in
our iterative algorithm, we only use the right hand side of the results in above graphs, because both d and −d are used at each iteration.
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Figure 5. Error in relative rotation and translation between the two cameras from UvA dataset. All algorithms were tested, taking the
resulting fundamental matrix and decomposing it into R and t.



The results follow the pattern of the results in Figure 4 of
the paper, where when an algorithm successfully estimated
the time shift, it also provided a good geometry estimate.

Both iterative algorithms Tβ-new-iter-pmax6 and Tβ-
new-iter-pmaxvar, which have pmax large enough to cover
the required time shifts, perform well over almost the en-
tire range of time shifts. The efficient Tβ-new-iter-pmax0
which iteratively uses d = 1 performed well up till the time
shifts of 0.25 s (5 frames). Tβ-new-d1, which is the solver
using d = 1 in RANSAC, was able to estimate the geometry
reliably only for a time shift of 1 frame. All the algorithms
based on the 7-point algorithm, including the 7-point algo-
rithm itself in RANSAC, performed poorly on this dataset.


