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1. Introduction

In this supplementary material, we include more detailed
gualitative and quantitative results on the VOC and SBD
datasets. Furthermore, we also show the runtime of our al-
gorithm.

Figuresl and2 show success and failure cases of our al-
gorithm. Figure3 compares the results of our algorithm
to the publicly available model for MNC3]. Figure 4
compares our results to those of FCE [concurrent work
which won the COCO 2016 challenge. Figwreresents
some qualitative results on the Cityscapes dataset.

Section 2 shows more detailed results on the VOC
dataset. Figuré shows a visualisation of our results at dif-
ferent AP " thresholds, and Table3 to 4 show per-class
AP results at thresholds of 0.5, 0.7 and 0.9.

Section 3 shows more detailed results on the SBD
dataset. Tablé shows our meaAP " results at thresholds
from 0.5 to 0.9, whilst Table§ and6 show per-clas&\P "
results at thresholds of 0.7 and 0.5 respectively.
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Figure 1: Success cases of our methodrirst and second rowOur algorithm can leverage good initial semantic segmen-
tations, and detections, to produce an instance segmentatiord row: Notice that we have ignored three false-positive
detections. Additionally, the red bounding box does not completely encompass the person, but our algorithm is still able to
associate pixels “outside-the-box” with the correct detection (also applies to rdw@}th row: Our system is able to deal

with the heavily occluded sheep, and ignore the false-positive detedifth.row: We have not been able to identify one
bicycle on the left since it was not detected, but otherwise have performedSieh.row: Although subjective, the train has

not been annotated in the dataset, but both our initial semantic segmentation and object detection networks have identi ed it.
Note that the rst three images are from the VOC dataset, and the last three from SBD. Annotations in the VOC dataset are
more detailed, and also make more use of the grey “ignore” label to indicate uncertain areas in the image. The rst column
shows the input image, and the results of our object detector which are another input to our network. Best viewed in colour.
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Figure 2: Failure cases of our method. First row: Both our initial detector, and semantic segmentation system did not
identify a car in the background. Additionally, the “brown” person prediction actually consists of two people that have been
merged together. This is because the detector did not nd the background p8esmmmd rowOur initial semantic segmen-

tation identi ed the table, but it is not there in the Instance Segmentation. This is because there was no “table detection” to
associate these pixels with. Using heuristics, we could propose additional detections in cases like these. However, we have
not done this in our workThird row: A dif cult case where we have segmented most of the people. However, sometimes

two people instances are joined together as one person instance. This problem is because we do not have a detection for
each person in the imagBourth row: Due to our initial semantic segmentation, we have not been able to segment the green
person and table correctl¥ifth row: We have failed to segment a bird although it was deteciéxth row: The occluding

cows, which all appear similar, pose a challenge, even with our shape priors. The rst column shows the input image, and
the results of our object detector which are another input to our network. Best viewed in colour.
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Figure 3: Comparison to MNC [3] The above examples emphasise the advantages in our method over3}IN@h(ike
proposal-based approaches such as MNC, our method can handle false-positive detections, poor bounding box localisation,
reasons globally about the image and also produces more precise segmentations due to the initial semantic segmentation
module which includes a differentiable CRRow 1shows a case where MNC, which scores segment-based proposals, is
fooled by a false-positive detection and segments an imaginary human (yellow segment). Our method is robust to false-
positive detections due to the initial semantic segmentation module which does not have the same failure modes as the
detector.Rows 2, 3 and 4how how MNC [] cannot deal with poorly localised bounding boxes. The horizontal boundaries

of the red person in Row 2, and light-blue person in Row 4 correspond to the limits of the proposal processed by MNC. Our
method, in contrast, can segment “outside the detection bounding box” due to the global instance unary potential (Eq. 4). As
MNC does not reason globally about the image, it cannot handle cases of overlapping bounding boxes well, and produces
more instances than there actually are. The rst column shows the input image, and the results of our object detector which
are another input to our network. MNC does not use these detections, but does internally produce box-based proposals which
are not shown. Best viewed in colour.
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Figure 3 continuedComparison to MNC [3] The above examples show that our method produces more precise segmen-
tations than MNC, that adhere to the boundaries of the objects. However, in Rows 3, 4 and 5, we see that MNC is able
to segment instances that our method misses ouRolw 3 our algorithm does not segment the baby, although there is a
detection for it. This suggests that our shape prior which was formulated to overcome such occlusions could be better. As
MNC processes individual instances, it does not have a problem with dealing with small, occluding instariReg. 4n

MNC has again identi ed a person that our algorithm could not. However, this is because we did not have a detection for
this person. IrRow 5 MNC has segmented the horses on the right better than our method. The rst column shows the input
image, and the results of our object detector which are another input to our network. MNC does not use these detections, but
does internally produce box-based proposals which are not shown. We used the publicly available code, models and default
parameters of MNC to produce this gure. Best viewed in colour.
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Figure 4: Comparison to FCIS [6] The above images compare our method to the concurrent work, EGI®Hich was

trained on COCO¢] and won the COCO 2016 challenge. Unlike proposal-based methods such as FCIS, our method can
handle false-positive detections and poor bounding-box localisation. Furthermore, as our method reasons globally about the
image, one pixel can only be assigned to a single instance, which is not the case with FCIS. Our method also produces more
precise segmentations, as it includes a differentiable CRF, and it is based off a semantic segmentation network. The results of
FCIS are obtained from their publicly available results on the COCO testtges (/github.com/daijifeng001/

TA-FCN). Note that FCIS is trained on COCO, and our model is trained on Pascal VOC which does not have as many classes
as COCO, such as “umbrella” and “suitcase” among others. As a result, we are not able to detect these objects. The rst
column shows the input image, and the results of our object detector which are another input to our network. FCIS does not
use these detections, but does internally produce proposals which are not shown. Best viewed in colour.
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Figure 5:Sample results on the Cityscapes datas@he above images show how our method can handle the large numbers
of instances present in the Cityscapes dataset. Unlike other recent approaches, our algorithm can deal with objects that are
not continuous — such as the car in the rst row which is occluded by a pole. Best viewed in colour.



2. Detailed results on the VOC dataset tation module. This may hinder our network in being able

: . o . to produce precise segmentations.
Figure 6 shows a visualisation of th&P " obtained by P P g

our m?thod fo: eac_h class across nine diﬁer?nt thresholdsgpe 1: Comparison of Instance Segmentation perfor-
Each “column” of Fig.6 corresponds to th&P " for each  mance at multipledP " thesholds on the VOC 2012 Vali-
class at a given loU threshold. It is therefore an alternate y5tion Set

representation for the results tables (Taldiés 4). We can

see that our method struggles with classes such as “bicy- AP '

cle”, “chair’, “dining table” and “potted plant”. This may Method 05 06 07 08 09 APl

be explained by the fact that current semantic segmentation
systems (including ours) struggle with these classes. All re-
cent methods on the Pascal VOC leaderbdaatbtain an

loU for these classes which is lower than the mean loU for _ _
all classes. In fact the semantic segmentation loU for the — Tables5 and6 show per-class instance segmentation re-
“chair” class is less than half of the mean loU for all the Sults onthe SBD dataset, at loU thresholds of 0.7 and 0.5 re-

classes for 16 out of the 20 most recent submissions on theSPectively. We can only compare results at these two thresh-
VOC leaderboard at the time of writing. olds since these are the only thresholds which other work

Ours (piecewise) 59.1 519 421 294 120 523
Ours (end-to-end) 62.0 54.0 448 323 138 554

Tables2 to 4 show per-class instance segmentation re- Nas reported.
sults on the VOC dataset, at loU thresholds of 0.9, 0.7 and
0.5 respectively. At an loU threshold 6f9, our method
achieves the highe®tP " for 16 of the 20 object classes.
At the threshold 0D:7, we achieve the highe&tP " in 15
classes. Finally, at an loU threshold @5, our method,
MPA 3-scale P] and PFN [/] each achieve the highe&P '
for 6 categories.

3. Detailed results on the SBD dataset

Once again, we show a visualisation of &kie¢ " obtained
by our method for each class across nine different thresh-
olds (Fig. 7). The trend is quite similar to the VOC dataset
in that our algorithm struggles on the same object classes
(“chair”, “dining table”, “potted plant”, “bottle”). Note that
our AP " for the “bicycle” class has improved compared to
the VOC dataset. This is probably because the VOC dataset
has more detailed annotations. In the VOC dataset, each
spoke of a bicycle's wheel is often labelled, whilst in SBD,
the entire wheel is labelled as a single circle with the “bi-
cycle” label. Therefore, the SBD dataset's coarser labelling
makes it easier for an algorithm to perform well on objects
with ne details.

Table1 shows our meaAP " over all classes at thresh-
olds ranging from 0.5 to 0.9. OWP " at 0.9 is low com-
pared to the result which we obtained on the VOC dataset.
This could be for a number of reasons: As the SBD dataset
is not as nely annotated as the VOC dataset, it might not
be suited for measuring th&P " at such high thresholds.
Additionally, the training data is not as good for training
our system which includes a CRF and is therefore able to
delineate sharp boundaries. Finally, as the SBD dataset has
5732 validation images (compared to the 1449 in VOC), it
leaves less data for pretraining our initial semantic segmen-

Ihttp://host.robots.ox.ac.uk:8080/leaderboard/
displaylb.php?challengeid=11&compid=6



Figure 6: A visualisation of th&P " obtained for each of the 20 classes on the VOC dataset, at nine different loU thresholds.
The x-axis represents the loU threshold, and the y-axis each of the Pascal classes. Therefore, each “column” of this gure
corresponds to thAP " per class at a particular threshold, and is thus an alternate representation to the results tables. Best

viewed in colour.

Figure 7: A visualisation of thAP " obtained for each of the 20 classes on the SBD dataset, at nine different loU thresholds.
The x-axis represents the loU threshold, and the y-axis each of the Pascal classes. Therefore, each “column” of this gure
corresponds to thAP " per class at a particular threshold, and is thus an alternate representation to the results tables. Best

viewed in colour.
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