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1. Introduction

In this supplementary material, we include more detailed
qualitative and quantitative results on the VOC and SBD
datasets. Furthermore, we also show the runtime of our al-
gorithm.

Figures1 and2 show success and failure cases of our al-
gorithm. Figure3 compares the results of our algorithm
to the publicly available model for MNC [3]. Figure 4
compares our results to those of FCIS [6], concurrent work
which won the COCO 2016 challenge. Figure5 presents
some qualitative results on the Cityscapes dataset.

Section 2 shows more detailed results on the VOC
dataset. Figure6 shows a visualisation of our results at dif-
ferent AP r thresholds, and Tables2 to 4 show per-class
AP r results at thresholds of 0.5, 0.7 and 0.9.

Section 3 shows more detailed results on the SBD
dataset. Table1 shows our meanAP r results at thresholds
from 0.5 to 0.9, whilst Tables5 and6 show per-classAP r

results at thresholds of 0.7 and 0.5 respectively.
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Figure 1:Success cases of our method.First and second row:Our algorithm can leverage good initial semantic segmen-
tations, and detections, to produce an instance segmentation.Third row: Notice that we have ignored three false-positive
detections. Additionally, the red bounding box does not completely encompass the person, but our algorithm is still able to
associate pixels “outside-the-box” with the correct detection (also applies to row 2).Fourth row: Our system is able to deal
with the heavily occluded sheep, and ignore the false-positive detection.Fifth row: We have not been able to identify one
bicycle on the left since it was not detected, but otherwise have performed well.Sixth row:Although subjective, the train has
not been annotated in the dataset, but both our initial semantic segmentation and object detection networks have identi�ed it.
Note that the �rst three images are from the VOC dataset, and the last three from SBD. Annotations in the VOC dataset are
more detailed, and also make more use of the grey “ignore” label to indicate uncertain areas in the image. The �rst column
shows the input image, and the results of our object detector which are another input to our network. Best viewed in colour.
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Figure 2: Failure cases of our method.First row: Both our initial detector, and semantic segmentation system did not
identify a car in the background. Additionally, the “brown” person prediction actually consists of two people that have been
merged together. This is because the detector did not �nd the background person.Second row:Our initial semantic segmen-
tation identi�ed the table, but it is not there in the Instance Segmentation. This is because there was no “table detection” to
associate these pixels with. Using heuristics, we could propose additional detections in cases like these. However, we have
not done this in our work.Third row: A dif�cult case where we have segmented most of the people. However, sometimes
two people instances are joined together as one person instance. This problem is because we do not have a detection for
each person in the image.Fourth row: Due to our initial semantic segmentation, we have not been able to segment the green
person and table correctly.Fifth row: We have failed to segment a bird although it was detected.Sixth row: The occluding
cows, which all appear similar, pose a challenge, even with our shape priors. The �rst column shows the input image, and
the results of our object detector which are another input to our network. Best viewed in colour.
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Figure 3: Comparison to MNC [3] The above examples emphasise the advantages in our method over MNC [3]. Unlike
proposal-based approaches such as MNC, our method can handle false-positive detections, poor bounding box localisation,
reasons globally about the image and also produces more precise segmentations due to the initial semantic segmentation
module which includes a differentiable CRF.Row 1shows a case where MNC, which scores segment-based proposals, is
fooled by a false-positive detection and segments an imaginary human (yellow segment). Our method is robust to false-
positive detections due to the initial semantic segmentation module which does not have the same failure modes as the
detector.Rows 2, 3 and 4show how MNC [3] cannot deal with poorly localised bounding boxes. The horizontal boundaries
of the red person in Row 2, and light-blue person in Row 4 correspond to the limits of the proposal processed by MNC. Our
method, in contrast, can segment “outside the detection bounding box” due to the global instance unary potential (Eq. 4). As
MNC does not reason globally about the image, it cannot handle cases of overlapping bounding boxes well, and produces
more instances than there actually are. The �rst column shows the input image, and the results of our object detector which
are another input to our network. MNC does not use these detections, but does internally produce box-based proposals which
are not shown. Best viewed in colour.
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Figure 3 continued:Comparison to MNC [3] The above examples show that our method produces more precise segmen-
tations than MNC, that adhere to the boundaries of the objects. However, in Rows 3, 4 and 5, we see that MNC is able
to segment instances that our method misses out. InRow 3, our algorithm does not segment the baby, although there is a
detection for it. This suggests that our shape prior which was formulated to overcome such occlusions could be better. As
MNC processes individual instances, it does not have a problem with dealing with small, occluding instances. InRow 4,
MNC has again identi�ed a person that our algorithm could not. However, this is because we did not have a detection for
this person. InRow 5, MNC has segmented the horses on the right better than our method. The �rst column shows the input
image, and the results of our object detector which are another input to our network. MNC does not use these detections, but
does internally produce box-based proposals which are not shown. We used the publicly available code, models and default
parameters of MNC to produce this �gure. Best viewed in colour.
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Figure 4: Comparison to FCIS [6] The above images compare our method to the concurrent work, FCIS [6], which was
trained on COCO [8] and won the COCO 2016 challenge. Unlike proposal-based methods such as FCIS, our method can
handle false-positive detections and poor bounding-box localisation. Furthermore, as our method reasons globally about the
image, one pixel can only be assigned to a single instance, which is not the case with FCIS. Our method also produces more
precise segmentations, as it includes a differentiable CRF, and it is based off a semantic segmentation network. The results of
FCIS are obtained from their publicly available results on the COCO test set (https://github.com/daijifeng001/
TA-FCN). Note that FCIS is trained on COCO, and our model is trained on Pascal VOC which does not have as many classes
as COCO, such as “umbrella” and “suitcase” among others. As a result, we are not able to detect these objects. The �rst
column shows the input image, and the results of our object detector which are another input to our network. FCIS does not
use these detections, but does internally produce proposals which are not shown. Best viewed in colour.
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Figure 5:Sample results on the Cityscapes datasetThe above images show how our method can handle the large numbers
of instances present in the Cityscapes dataset. Unlike other recent approaches, our algorithm can deal with objects that are
not continuous – such as the car in the �rst row which is occluded by a pole. Best viewed in colour.



2. Detailed results on the VOC dataset

Figure6 shows a visualisation of theAP r obtained by
our method for each class across nine different thresholds.
Each “column” of Fig.6 corresponds to theAP r for each
class at a given IoU threshold. It is therefore an alternate
representation for the results tables (Tables2 to 4). We can
see that our method struggles with classes such as “bicy-
cle”, “chair”, “dining table” and “potted plant”. This may
be explained by the fact that current semantic segmentation
systems (including ours) struggle with these classes. All re-
cent methods on the Pascal VOC leaderboard1 obtain an
IoU for these classes which is lower than the mean IoU for
all classes. In fact the semantic segmentation IoU for the
“chair” class is less than half of the mean IoU for all the
classes for 16 out of the 20 most recent submissions on the
VOC leaderboard at the time of writing.

Tables2 to 4 show per-class instance segmentation re-
sults on the VOC dataset, at IoU thresholds of 0.9, 0.7 and
0.5 respectively. At an IoU threshold of0:9, our method
achieves the highestAP r for 16 of the 20 object classes.
At the threshold of0:7, we achieve the highestAP r in 15
classes. Finally, at an IoU threshold of0:5, our method,
MPA 3-scale [9] and PFN [7] each achieve the highestAP r

for 6 categories.

3. Detailed results on the SBD dataset

Once again, we show a visualisation of theAP r obtained
by our method for each class across nine different thresh-
olds (Fig.7). The trend is quite similar to the VOC dataset
in that our algorithm struggles on the same object classes
(“chair”, “dining table”, “potted plant”, “bottle”). Note that
our AP r for the “bicycle” class has improved compared to
the VOC dataset. This is probably because the VOC dataset
has more detailed annotations. In the VOC dataset, each
spoke of a bicycle's wheel is often labelled, whilst in SBD,
the entire wheel is labelled as a single circle with the “bi-
cycle” label. Therefore, the SBD dataset's coarser labelling
makes it easier for an algorithm to perform well on objects
with �ne details.

Table1 shows our meanAP r over all classes at thresh-
olds ranging from 0.5 to 0.9. OurAP r at 0.9 is low com-
pared to the result which we obtained on the VOC dataset.
This could be for a number of reasons: As the SBD dataset
is not as �nely annotated as the VOC dataset, it might not
be suited for measuring theAP r at such high thresholds.
Additionally, the training data is not as good for training
our system which includes a CRF and is therefore able to
delineate sharp boundaries. Finally, as the SBD dataset has
5732 validation images (compared to the 1449 in VOC), it
leaves less data for pretraining our initial semantic segmen-

1http://host.robots.ox.ac.uk:8080/leaderboard/
displaylb.php?challengeid=11&compid=6

tation module. This may hinder our network in being able
to produce precise segmentations.

Table 1: Comparison of Instance Segmentation perfor-
mance at multipleAP r thesholds on the VOC 2012 Vali-
dation Set

Method
AP r

AP r
vol0.5 0.6 0.7 0.8 0.9

Ours (piecewise) 59.1 51.9 42.1 29.4 12.0 52.3
Ours (end-to-end ) 62.0 54.0 44.8 32.3 13.8 55.4

Tables5 and6 show per-class instance segmentation re-
sults on the SBD dataset, at IoU thresholds of 0.7 and 0.5 re-
spectively. We can only compare results at these two thresh-
olds since these are the only thresholds which other work
has reported.



Figure 6: A visualisation of theAP r obtained for each of the 20 classes on the VOC dataset, at nine different IoU thresholds.
The x-axis represents the IoU threshold, and the y-axis each of the Pascal classes. Therefore, each “column” of this �gure
corresponds to theAP r per class at a particular threshold, and is thus an alternate representation to the results tables. Best
viewed in colour.

Figure 7: A visualisation of theAP r obtained for each of the 20 classes on the SBD dataset, at nine different IoU thresholds.
The x-axis represents the IoU threshold, and the y-axis each of the Pascal classes. Therefore, each “column” of this �gure
corresponds to theAP r per class at a particular threshold, and is thus an alternate representation to the results tables. Best
viewed in colour.
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