
Supplementary material of: CNN-based Patch Matching for Optical Flow with
Thresholded Hinge Embedding Loss

Probability for distribution Distribution
2/7 N10(p2)
1/7 N20(p2)
1/7 N50(p2)
1/7 N100(p2)
1/7 N200(p2)
1/7 N∞(p2)

Table 1. Distribution of negative training samples N(p2).

1. Introduction
In this supplementary material we present additional de-

tails and results for our main paper. In Section 2 we present
the distribution of our negative training samples N(p+2)
which we introduced in Section 3.2 in the paper. Then, we
show the principle of our test time speedup in Section 3. In
Section 4 we introduce the faster CNN structure mention in
Section 4.3 in the paper. In Figure 3 in the paper we omitted
one plot for clarity reasons. The full figure is shown in Fig-
ure 2. The corresponding section is Section 4. Finally, in
Section 5 we present some additional plots. These are based
directly on robustness r instead of E(net1, net2). While,
E(net1, net2) as we used it in the paper makes it easier to
compare networks it omits the absolute component. We also
plot the average L2 distance of different spatial distances in
Figure 5. Figure 4 shows that we report most failures for
small distances as argued in Section 4.2 in the paper.

2. Distribution of negative training samples
Here we introduce the distribution N(p+2) which we

used for choosing the negative training samples. With
N(p+2) we wanted to create distribution that should strongly
prefer closer (=harder to train) samples, but still not ig-
nore far away samples. Our basic idea was something like
P (Nidea(p

+
2) = p2) = 1/max(10, ||p+2 − p2||2)/#norm.

(#norm = normalization factor). However this is difficult
to implement. Instead the distribution N(p+2) is defined as
meta distribution that samples from distributions Nx(p

+
2)

with a certain probability. The distributions it samples from
and the respective probabilities are shown in Table 2. A dis-
tribution Nx(p

+
2) is an uniform distribution that contains

all samples that are at least 2 pixels and at most x pix-
els away from p+2 in image space. Note that for instance
N1300(p

+
2) is identical to N∞(p+2) due to the limited im-

age size. N(p+2) approximates Nidea(p
+
2) (with little more

focus to closer samples) and is easy to implement with ba-
sic random number generators as it consists only of uniform
distributions.

3. Test time speedup trough weight sharing
Our CNNs are trained on single patches, but in the test

phase used to calculate feature vectors for patches around
each pixel in an image (in a sliding window manner). As
illustrated in Figure 1 (please read its caption) CNNs of
patches of neighboring pixels share many intermediate layer
convolution results. To avoid redundant recalculations, con-
volutions of a layer can simply be performed on the whole
image at once instead of single patches. For poling layers
(or other layers with stride) the layer has to be calculated
several times with different pooling offsets. This is also
demonstrated in Figure 1. In the illustration two pooling
layers are required (illustrated by the green and blue color).
For a 2 dimensional image and our 2x2 pooling, 2*2 = 4
poolings are required (pool(x,y), pool(x+1,y), pool(x,y+1)
and pool(x+1,y+1)). Furthermore, in case of two pooling
layers in the network every pooling layer of the first pooling
layer must be pooled again four times in the second pool-
ing layer which leads all together to (2*2)*(2*2) = 16 pool-
ings in the 2. layer. In our implementation we treat the 4
poolings of the first pooling layer and the 16 poolings on
the second pooling layer as individual samples for the sub-
sequent layers. In a final stage we recompose the original
image from the 16 mini images.

Layer 1 2 3 4 5 6 7 8
Type Conv MaxPool Conv Conv MaxPool Conv Conv Conv

Input size 56x56 52x52 26x26 22x22 18x18 9x9 5x5 1x1
Kernel size 5x5 2x2 5x5 5x5 2x2 5x5 5x5 1x1

Out. channels 64 64 80 128 160 196 256 256
Stride 1 2 1 1 2 1 1 1

Nonlinearity Tanh - Tanh Tanh - Tanh Tanh Tanh

Table 2. The improved CNN architecture mentioned in the paper
(post experiment).

1

Figure 1. Left: A simplified 2 dimensional CNN structure for patch feature creation that contains one pooling layer and two convolution
layers. Right: if this CNN is executed at each pixel position of an image to create features for every position many intermediate layer
results are shared between networks. The numbers in the nodes state how often a node is shared. The red connections show how the red
node is shared. Pooling with stride two halves the output resolution. Thus, we need two pooling layers: the original one (blue) and one
shifted by one pixel (green) to avoid halving the output resolution. Outputs always only depend on e one kind of pooling.

4. Faster CNN architecture
The improved CNN architecture mentioned in the paper

that only requires 2.5s instead of 4.5s (for all CNN opera-
tions needed for an image pair) is shown in Figure 2. For
this architecture we reduced the number of channels in the
upper layers, as these are most costly when calculating fea-
tures for each pixel with weight sharing (see last section).
Still, on our validation set this architecture even performed
slightly better (but not mentionable better). Note that for
our paper we did not spend much effort in improving the
runtime of our CNN architecture, as our (so far still CPU
based) patch matching requires more time than CNN fea-
ture creation.

5. Training a CNN with the distribution of a
downsampled CNN

Instead of training a CNN on a 2x down-sampled image
we can also just train a CNN on the highest resolution with
the distribution N×2(p+2) = 2N(p+2)− p+2 of the 2x down-
sampled image i.e. distances between p+2 and p−2 in N(p2)
are multiplied by 2. Figure 2 contains this result addition-
ally to the results already presented in the paper. As can be
seen in the figure, this is not a good solution compared to
real downsampling.

6. Additional Plots
Figure 3 shows the one minus matching robustness (1−

r) curves for different losses and SIFTFlow regarding opti-
cal flow displacement.

Figure 4 shows the matching robustness curves r regard-
ing distances between the correct match p+2 and a wrong
match p−2 . The robustness is much smaller for small dis-
tances than for large ones. This shows that training of small
distances is much more challenging. Still, conventional

CNN patch learning papers that treat patch matching on an
abstract level usually do not consider these “harder” cases.

Note that despite the much higher robustness, robustness
differences for larger distances are also very relevant, as
there are more points with large distances than with small
distances (more potential failure cases). Furthermore, an
outlier with a larger distance causes a larger endpoint error.
Also, with patch matching a successful match of large dis-
tance is often a mandatory requirement to be even able to
perform a smaller distance match.

Figure 5 shows the average L2 distance for different dis-
tances between the correct match p+2 and a wrong match
p−2 . With larger t these curves become flatter for Lt.

0 5 10 15 20 25
50

70

90

110

130

150

170

190 No downsampling (NDS)
Downsample x2
NDS, training distribution of
downsampe x2
Downsample x2 with more
close by training
Downsample x2 with
32x32 CNN

Distance to correct match in pixels

R
e

le
a

tiv
e

 e
rr

o
r

co
m

p
a

re
d

 to
 "

S
ca

le
 1

"
in

 %

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200
No downsampling (NDS)
Downsample x2
Downsample x4
NDS, training distribution of downsampe x2
Downsample x2 with more close by training

Distance to correct match in pixels

R
e

le
a

tiv
e

 e
rr

o
r

co
m

p
a

re
d

 to
 "

S
ca

le
 1

"
in

 %

Figure 2. Features created on lower scales are more accurate for large distances but less accurate for small distances. Here we also include
the curve of a CNN that was on the highest resolution trained with the distribution of a 2x downsampled resolution.

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25

L_t, t = 0.2

L_t, t = 0.3*

L_t, t = 0.4

L_t, t = 0.45

L_g, g = 0.4

DrLIM

Hard Mining x2

SIFTFlow

Optical Flow offset

1-
 r

 in
 %

Figure 3. Absolute robustness plots for different flow displacements (We use 1-r not r for this figure).

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
30

40

50

60

70

80

90

100

L_t, t = 0.2

L_t, t = 0.3*

L_t, t = 0.4

L_t, t = 0.45

L_g, g = 0.4

DrLIM

Hard Mining x2

SIFTFlow

Distance to correct match in pixel

R
ob

us
tn

es
s

r
in

 %

0 5 10 15 20 25
95

95.5

96

96.5

97

97.5

98

98.5

99

99.5

L_t, t = 0.2

L_t, t = 0.3*

L_t, t = 0.4

L_t, t = 0.45

L_g, g = 0.4

DrLIM

Hard Mining x2

SIFTFlow

Distance to correct match in pixel

R
ob

us
tn

es
s

r

Figure 4. Absolute robustness plots for different distances between the correct match p+2 and a wrong match p−2 .

0 1 2 3 4 5 6 7 8 9 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L_t, t = 0.2

L_t, t = 0.3*

L_t, t = 0.4

L_t, t = 0.45

L_g, g = 0.4

DrLIM

Hard Mining x2

Distance to correct match in pixel

A
ve

ra
ge

 L
_2

 d
is

ta
nc

e
of

 m
at

ch
es

Figure 5. Average L2 distance for different distances to the correct match for different losses.

Figure 6. Pixelwise robustness for the first image in the validation set. Blue: No ground truth. Red: Less than 95% matching robustness.
Green: 100% robustness. Color between green an red: matching robustness between 95% and 100%. On the top left is the result for the
hinge loss Lh. On the top right for Lt, t = 0.3. On the bottom are the corresponding views. Most errors (low robustnesses) accumulate in
large connected regions. However, with our loss Lt, t = 0.3 there are less and smaller error regions.

