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This is the gms matching result after RANSAC(fundamental matrix) on Zubud(Repeated Structure) Dataset.

The all 17 image pairs ,selected by [1], are very difficult, so that many state-of-art algorithms all fails. 
Here, we show that our gms matching gets acceptable results. 



[1] Epipolar Geometry Estimation for Urban Scenes with Repetitive Structures. Kushnir, Maria and Shimshoni, Ilan. IEEE TPAMI 2014






Supplementary/supplementary.pdf


000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107


CVPR
#1703


CVPR
#1703


CVPR 2017 Submission #1703. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.


GMS: Grid-based Motion Statistics for
Fast, Ultra-robust Feature correspondence


Anonymous CVPR submission


Paper ID 1703


1. Contents


The supplementary contains experiments and analysis
that do not fit comfortably in the main paper. a) One of
GMS’s advantages is that apart from smoothness, it make
no a-prior motion assumptions. Section 2 shows GMS can
comfortably computer correspondence on datasets typically
employed for demonstrating multi-body RANSAC. b) Sec-
tion 3 shows GMS can work in many challenging non-
traditional matching scenes. c) Section 4 provides timing
breakdowns for GMS and other algorithms. d) Finally, we
include 3 sample videos in the supplementary material.


2. Independent motion


Fig. 1 shows GMS is not influenced by independent mo-
tion. The first image’s spatially varying color is propagated
to the second image by our correspondence.


Img1


Img2


Figure 1. Corresponding feature points in each image is are
marked with the same color.


3. Extreme cases


One drawback of the main paper’s standard evaluations
is that algorithm performance on extreme cases are buried in
general statistics. Fig 2 shows matching on non-traditional
scenes. We include Deep-Matching the input to most opti-
cal flow algoirthms, SIFT one of the most respected feature
matchers and BF the leading technique in the main-body.


Fig 2 a) shows that GMS can sometime outperform even
BF. b) shows GMS can avoid matching scenes that look sim-
ilar but actually belong to different places. c) shows that


GMS parameters are robust enough to avoid matching ex-
treme repeated structures.


(c) Repetitive Structure: Central towers belong to different places. 


SIFT BF DM OURS


(b) Visually similar but physically different scenes.


Img1


Img2


pair2


pair1


pair3


pair4


(a) Flexible object: The fur movement damage local descriptors. 


Figure 2. (a) Flexible object makes motion not continuous, so the
Deep-Matching breaks down easily in this scene. (b) Different
places should not be matched. Unlike other feature matchers, GMS
is quite reliable at rejecting such image pairs. (c) Note GMS’s
excellent performance on repeated structures.


4. Time


A break-down of time consumption for each algorithm is
listed in Tab.1. Note that SIFT and SURF in Tab.1 are listed
with CPU based speeds. However, they have real-time GPU
implementations
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Methods SIFT [5] SURF [1] ORB [8] SR [6] OURS BF [3] BD [4] DM [10] GAIM [2] LIFT [11]
TFeature(ms) 150.8 33.8 11.0 150.8 36.0 1,191.3 151.5 \ 2,641.0 16,747.8
TMatch(ms) 24.3 12.5 1.2 24.3 24.1 842.0 24.3 \ 230.0 65.3
TDecision(ms) \ \ \ 5.3 0.8 3,522.7 6,424.0 9,848.3 5,282.2 \
Speed(fps) 6.63 29.58 90.91 6.63 27.78 0.28 0.16 0.10 0.19 0.06


Table 1. Feature extraction, nearest-neighbor match, and match decision process can be easily parallized. Thus, Bottleneck =
max(TFeature, TMatch, TProcess). The time records are evaluated on VGA images, with 480× 640 resolution, from TUM [9] dataset.


5. Video demo
We attach three video demos.
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Supplementary/VideDemoLInk.txt
Please refer to

http://jwbian.net/gms

for video


