FFTLasso: Large-Scale LASSO in the Fourier Domain
(Supplementary Material)

Adel Bibi, Hani Itani, Bernard Ghanem
King Abdullah University of Science and Technology (KAUST), Saudi Arabia

adel.bibilkaust.edu.sa, hmilO@mail.aub.edu, bernard.ghanem@kaust.edu.sa

In this supplementary, we will discuss the details to the
provided formulation in the main manuscript. Next, we will
present an efficient matrix notation implementation of FFT-
Lasso. Lastly, we discuss the memory efficiency of the al-
gorithm. The original LASSO is given as follows:

min [|Ac — bl[3 + Alle[[s (1)
Problem 1 is equivalent to the FFTLasso reformulation:

min |A¢ — bl + A\|€|; st D& =0, 2)

where A € R™*™" and is block wise circulant. First and
for reasons discussed in the main manuscript, we need to
find the dual equivalence to problem 2. To do so, we intro-
duce a new variable r = A¢ — b as follows:

min [r|2 + AJ¢]; st Dé=0, Ac—b=r (3)
c,r

Then, the corresponding lagrangian is defined as follows:
L(r,e,9,0) := [r][3 + Alle]lx S
+UT(Ae—b—r)+6TDe

To find the dual problem, we minimize over the primal vari-
ables as follows:

min [Hrug - \I/Hr] — gHpt

min [)\|I6||1 + OHAG + GHDE])
(&
~Hb
1
cH(—AHY — DHY) — ¢,

- ’\méj‘x()) ©)
1

= —yHp Z||\1:H§ — 1y _ang_prg.<r (D

Therefore, the dual problem is given as follows:

1 -
r\rp1igl\IJHb + ZH\PH% st |[ARY +DHY|, <\ (8)

N N
1
F(pZdiag(éi @ar) + iIm)FH\II = FEdiag(

Now, we apply ADMM to problem 8. First, we introduce
the change of variables (= ATV + D79 and append the
|-loo constraint as an indicator function. Problem 8 is then
equivalent to:

: 1 2 H
Inin ZH‘I’H2 +¥7b + Lj¢j,.<n

st ¢(=ATv+ D70)
The augmented lagrangian is defined as follows:

~ 1

(AT + D9 — () + L||AMw + DT - (|3
The primal-dual update variables are given as follows:
Update U:
1 ~
TF L = argminy, Zuqfng + UHp + eHAHY
Y

n gHAqu +DHY - ¢|2

The previous objective minimization reduces to solving the
following linear system:

-~ 1 -~
(pAAT + 5Im)\pk“ =A(p¢ —pDTH—¢)—b (12)
Since Ae = ZN Ase; ZN a' © &f where e =

pC — pDTO — &. The solut1on to the llnear system is given
as follows:

a7 0e}) —

By multiplying both sides by F¥ where FF# = 1,,, then:
pZdzag a4;,0a’) + I Zdzag &%) — b*
Ngs ~ A

N~ -«
P2 aiQa;"—l-%

Update DH¢:
DHY1 — argming, ¢HDHO + gHAH\p + DHp — (|2
DHpH — ¢ —¢/p— AHD

y (14
To compute AHW efficiently, the diagonalization trick can
be applied again as follows:

F(a; © ¥*)
ARy — : (15)
F(a, ©¥*)
Update (:
. . P =
G =argmin: Ly <\ — et + §||AT\I’ + DT — ¢l3
=argmin, [|¢ — (AM¥ +D”0 +¢&/p)|[3

st [[¢]feo < A
(16)
The former is just a simple Euclidian projection to the |.||o
ball and is given as follows:

¢FH = sign(t) © min(Jt], \) (17

where t = ATW + D70 + ¢/p. Lastly, a Nesterov dual

ascent is applied to the dual variables as follows:

Update c: -
Cri1 =Yk + p(ATT + DHY — () (18)

Vir1 = (1 +q)€k1 — g 19)

The algorithm is given as follows:

Algorithm 1: FFTLasso for Problem (9)

Next we present a more efficient implementation to FFT-
Lasso algorithm using matrix notation. First we define the
new variables in matrix notation as follows: e € R™" is
changed to E € R™*", DH0 is changed to © € R™*",
t € R™" is changed to T € R™*", ¢ € R™" is changed to
CeR"™" ye R™ ischanged to Y € R"™*"™, and lastly
¢ € R™™ is changed to Z € R™*". The algorithm is then
given as follows: In this matrix notation, there is no need

Algorithm 2: FFTLasso for Problem (9)

Input :b, A, A* =F,A,C; =Y, =E, =T, =
Z,=0,= Omxn € Rmxn’ U=
0,,,corr?®® = sum(A* ® A,Z), A, p1,y >
1,q.

Output: c

while not converged do

cpmpute: Ek;lrl = kak — pk@k — Ck

U* update: U}, =

<sum(A* OE*2) - B*)/(pkcorrm + %)

compute: A"¥;_; seeEq(15)

O update: (04, 1) = (Z — iCk — ARY,)
@(hend,:) = OnH

compute: Ty = AR, + 60,41 + Ci/pi
Z update: Z 1 = sign(Tgy1) © min(|Txi1], A)
C update: _

Cht1 =Y+ p(ARU 1 + Opy1 — Zit)
compute: Yy 1 = (1 +¢q)Cri1 — qCr

Pri1 = VPk

end
¢ «— C(l:end,:)

Input Zb,A,él = 5’1 = e = tl = Cl = DH01 =
0, ¥ =0,,, A\, p1,7> 1,4

Output: c
while not converged do
compute: e;1 = pp(, — ppr DO, — ¢
\i/* update: \i,* _ ZzN 5Zk®é;kk+1—5*

paate: Xhr = SV acar+1
compute: AHW, ., see Eq (15)
D¢ update: ~
(DH0p41) = (Ck — -Cn — ATy y)
(DH0k+1)l:m:end :~0n
compute: t; | = AH\I/k_;,_l + DH9k+1 + ék/pk'
Cupdate: (i1 = sign(ty+1) O min([tri1],A)
¢ update: _
Crp1 =Yk + pe(ARU L + DHOp oy — (o)
compute: ¥ 1 = (1 + q)Cry1 — qCy
Pk+1 = VPk

end
¢ < ¢(1:m:end)

to reshape any of the variables for any operation unlike the
case in Algorithm 1.

Regarding the memory efficiency, often there are over-
head in computing the FFT of many long vectors that is
when both (m, n) are large. For instance, computing FE
for large (m,n). The overhead of storage due to replicating
E is not always done efficiently. To circumvent this issue,
we simply split the matrix E into two pieces horizontally
E;,E; € RZ*" into an even and odd fashion similar to
the butterfly algorithm used to compute the FFTs. Now we
only compute the FFT of smaller vectors 7 where we can
simply combine them later. For completeness we show here

how the procedure is carried out.
Let v € R™, it can be written as follows v = v; +
H

vo where v; = [’UO 0 v2]

[0 vl 0 w03]H It is obvious that v = vy + Vg
where v is the fourier transform of v. All is left is to com-

and where vy =

Speed Comparison on Different Dictionary Sizes on TitanX

—o— CPU Freq: 1.2 GHz
—<4— CPU Freq: 1.6 GHz
—— CPU Freq: 2.0 GHz

-15 —+— CPU Freq: 2.7 GHz

8192 BQO&

20

4000 4096
I I

I I I I I I I
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Dictionary Size

|
10000

(@) m =n.

)

TrrTLasso

Tpr-apyvum

log(-

-

o

N

I I I I I I
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Speed Comparison on Different Dictionary Sizes on Pascal

L -2.5
-3
8192 8900

—o— CPU Freq: 12 GHz
PU Freq: 1.6 GHz

i
Y

A

)
10000
Dictionary Size

(b) m = n.

Figure 1. Runtime comparison between FFTLasso-GPU (on TitanX) and DL-ADMM (multi-core) at different CPU frequencies for square

dictionaries (m = n)

pute both vy, and v5 using lower order FFT as follows:

" _jorki & —jorki
Fv, —) exp —LoTRL _) exp 2=
N ST =L SR P
i=0 0.24,..
m . . . =
i —j2mki e .
= Z ve(i)expyi = V(i) ex
i=0.2.4,.. m v=01,...
= V()i =0,1,..,m
That means vi = [V f/e]H which is only a repeated

version of the FFT of 3 of the even part of v and where
Ve = [vO v2 ..] A similar trick can be applied to v
followed by a shift to the right. One can easily show that
vy = [\7@ ffe]H ® p where p(i) = exp %ﬂ“ Vi =
0,1, ..., m. Therefore,
A R G N ol

Lastly, in here we present the results of both the TitanX
(1.0GHz/core) and TitanX Pascal (1.4GHz/core) experi-
ments comparing FFTLasso to different multi-core CPU
frequencies of DL-ADMM. Figure 1, shows a comparison
between several hardware (GPUs) of FFTLasso against DL-
ADMM on high frequency multi core CPUs. It is clear
that depending on the hardware used and the dictionary A
used one would prefer using DL-ADMM over FFTLasso
and vice versa. However, figure 1 clearly shows incremen-
tal monotone improvement in the speed of FFTLasso as the
dictionary size grows large. Specifically, FFTLasso is most-
ly optimized for any dictionary that is of powers of an inte-
ger radix (in this case radix 2).

