
FFTLasso: Large-Scale LASSO in the Fourier Domain
(Supplementary Material)

Adel Bibi, Hani Itani, Bernard Ghanem
King Abdullah University of Science and Technology (KAUST), Saudi Arabia
adel.bibi@kaust.edu.sa, hmi10@mail.aub.edu, bernard.ghanem@kaust.edu.sa

In this supplementary, we will discuss the details to the
provided formulation in the main manuscript. Next, we will
present an efficient matrix notation implementation of FFT-
Lasso. Lastly, we discuss the memory efficiency of the al-
gorithm. The original LASSO is given as follows:

min
c
||Ac´ b||22 ` λ||c||1 (1)

Problem 1 is equivalent to the FFTLasso reformulation:

min
c̃
}Ãc̃´ b}22 ` λ}c̃}1 s.t Dc̃ “ 0, (2)

where Ã P Rmˆmn and is block wise circulant. First and
for reasons discussed in the main manuscript, we need to
find the dual equivalence to problem 2. To do so, we intro-
duce a new variable r “ Ãc̃´ b as follows:

min
c̃,r

}r}22 ` λ}c̃}1 s.t Dc̃ “ 0, Ãc̃´ b “ r (3)

Then, the corresponding lagrangian is defined as follows:

Lpr, c̃,Ψ, θq :“ ||r||22 ` λ||c̃||1 (4)

`ΨT pÃc̃´ b´ rq ` θTDc̃

To find the dual problem, we minimize over the primal vari-
ables as follows:

min
r

”

||r||22 ´ΨHr
ı

´ΨHb`

min
c̃

”

λ||c̃||1 `ΨHÃc̃` θHDc̃
ı

(5)

“ ´ΨHb´
1

4
}Ψ}22

´ λmax
c̃

´ c̃Hp´ÃHΨ´DHθq ´ }c̃}1
λ

¯

(6)

“ ´ΨHb´
1

4
}Ψ}22 ´ 1 1

λ }´ÃHΨ´DHθ}8ď1 (7)

Therefore, the dual problem is given as follows:

min
Ψ,θ

ΨHb`
1

4
}Ψ}22 s.t }ÃHΨ`DHθ}8 ď λ (8)

Now, we apply ADMM to problem 8. First, we introduce
the change of variables ζ “ ÃTΨ `DT θ and append the
}.}8 constraint as an indicator function. Problem 8 is then
equivalent to:

min
Ψ,θ,ζ

1

4
}Ψ}22 `ΨHb` 1}ζ}8ďλ

s.t ζ “ ÃTΨ`DT θ (9)

The augmented lagrangian is defined as follows:

LpΨ, θ, ζ, c̃q :“
1

4
}Ψ}22 `ΨHb` 1}ζ}8ďλ`

c̃HpÃTΨ`DT θ ´ ζq `
ρ

2
||ÃHΨ`DT θ ´ ζ||22

(10)

The primal-dual update variables are given as follows:
Update Ψ:

Ψk`1 “ argminΨ

1

4
}Ψ}22 `ΨHb` c̃HÃHΨ

`
ρ

2
||ÃHΨ`DHθ ´ ζ||22

(11)

The previous objective minimization reduces to solving the
following linear system:

pρÃÃT `
1

2
ImqΨ

k`1 “ Ãpρζ ´ ρDT θ ´ c̃q ´ b (12)

Since Ãe “
řN
i Aiei “ F

řN
i â˚i d ê˚i where e “

ρζ ´ ρDT θ ´ c̃. The solution to the linear system is given
as follows:

Fpρ
N
ÿ

i

diagpâi d â˚i q `
1

2
ImqF

HΨ “ F
N
ÿ

i

diagpâ˚i d ê˚i q ´ b

By multiplying both sides by FH where FFH “ Im, then:

pρ
N
ÿ

i

diagpâi d â˚i q `
1

2
ImqΨ̂

˚ “

N
ÿ

i

diagpâ˚i d ê˚i q ´ b̂˚

Ψ̂˚ “

řN
i â˚i d ê˚i ´ b̂˚

ρ
řN
i âi d â˚i `

1
2

(13)

1

Update DHθ:

DHθk`1 “ argminDHθ c̃HDHθ `
ρ

2
}ÃHΨ`DHθ ´ ζ}22

DHθk`1 “ ζ ´ c̃{ρ´ ÃHΨ
(14)

To compute ÃHΨ efficiently, the diagonalization trick can
be applied again as follows:

ÃHΨ “

»

—

–

Fpâ1 dΨ˚q
...

Fpân dΨ˚q

fi

ffi

fl

(15)

Update ζ:

ζk`1 “argminζ 1}ζ}8ďλ ´ c̃Hζ `
ρ

2
||ÃTΨ`DT θ ´ ζ||22

“argminζ ||ζ ´ pÃ
HΨ`DT θ ` c̃{ρq||22

s.t. ||ζ||8 ď λ
(16)

The former is just a simple Euclidian projection to the }.}8
ball and is given as follows:

ζk`1 “ signptq dminp|t|, λq (17)

where t “ ÃTΨ ` DT θ ` c̃{ρ. Lastly, a Nesterov dual
ascent is applied to the dual variables as follows:
Update c̃:

c̃k`1 “ ỹk ` ρpÃ
HΨ`DHθ ´ ζq (18)

ỹk`1 “ p1` qqc̃k`1 ´ qc̃k (19)

The algorithm is given as follows:

Algorithm 1: FFTLasso for Problem (9)

Input : b,A, c̃1 “ ỹ1 “ e1 “ t1 “ ζ1 “ DHθ1 “

0mn,Ψ “ 0m, λ, ρ1, γ ą 1, q.
Output: c
while not converged do

compute: ek`1 “ ρkζk ´ ρkD
Hθk ´ c̃k

Ψ̂˚ update: Ψ̂˚k`1 “

řN
i â˚i dê˚ik`1´b̂˚

ρk
řN
i âidâ˚i `

1
2

compute: ÃHΨk`1, see Eq (15)
DHθ update:
pDHθk`1q “ pζk ´

1
ρk
c̃k ´ ÃHΨk`1q

pDHθk`1q1:m:end “ 0n
compute: tk`1 “ ÃHΨk`1 `DHθk`1 ` c̃k{ρk
ζ update: ζk`1 “ signptk`1q dminp|tk`1|, λq
c̃ update:
c̃k`1 “ ỹk ` ρkpÃ

HΨk`1 `DHθk`1 ´ ζk`1q

compute: ỹk`1 “ p1` qqc̃k`1 ´ qc̃k
ρk`1 “ γρk

end
cÐ c̃p1:m:endq

Next we present a more efficient implementation to FFT-
Lasso algorithm using matrix notation. First we define the
new variables in matrix notation as follows: e P Rmn is
changed to E P Rmˆn, DHθ is changed to Θ P Rmˆn,
t P Rmn is changed to T P Rmˆn, c P Rmn is changed to
C P Rmˆn, y P Rmn is changed to Y P Rmˆn, and lastly
ζ P Rmn is changed to Z P Rmˆn. The algorithm is then
given as follows: In this matrix notation, there is no need

Algorithm 2: FFTLasso for Problem (9)

Input : b,A, Â˚ “ FmA,C1 “ Y1 “ E1 “ T1 “

Z1 “ Θ1 “ 0mˆn P Rmˆn,Ψ “

0m, corr
aa “ sumpÂ˚ d Â,2q, λ, ρ1, γ ą

1, q.
Output: c
while not converged do

compute: Ek`1 “ ρkZk ´ ρkΘk ´Ck

Ψ̂˚ update: Ψ̂˚k`1 “
´

sumpÂ˚ d Ẽ˚,2q ´ b̂˚
¯

{

´

ρkcorr
aa ` 1

2

¯

compute: ÃHΨk`1, see Eq (15)
Θ update: pΘk`1q “ pZ´

1
ρk
Ck ´ ÃHΨk`1q

Θ(1:end,:) “ 0H
n

compute: Tk`1 “ ÃHΨk`1 `Θk`1 `Ck{ρk
Z update: Zk`1 “ signpTk`1q dminp|Tk`1|, λq
C update:
Ck`1 “ Yk ` ρkpÃ

HΨk`1 `Θk`1 ´ Zk`1q

compute: Yk`1 “ p1` qqCk`1 ´ qCk

ρk`1 “ γρk
end
cÐ Cp1:end,:q

to reshape any of the variables for any operation unlike the
case in Algorithm 1.

Regarding the memory efficiency, often there are over-
head in computing the FFT of many long vectors that is
when both pm,nq are large. For instance, computing FE
for large (m,n). The overhead of storage due to replicating
E is not always done efficiently. To circumvent this issue,
we simply split the matrix E into two pieces horizontally
E1,E2 P Rm

2 ˆn into an even and odd fashion similar to
the butterfly algorithm used to compute the FFTs. Now we
only compute the FFT of smaller vectors m

2 where we can
simply combine them later. For completeness we show here
how the procedure is carried out.

Let v P Rm, it can be written as follows v “ v1 `

v2 where v1 “
“

v0 0 v2 . . .
‰H

and where v2 “
“

0 v1 0 v3 . . .
‰H

. It is obvious that ṽ “ ṽ1 ` ṽ2

where ṽ is the fourier transform of v. All is left is to com-

2

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Dictionary Size

-3

-2

-1

0

1

2

3

lo
g
(

T
F
F
T
L
a
s
s
o

T
D
L
−
A
D
M

M
)

Speed Comparison on Different Dictionary Sizes on TitanX

CPU Freq: 1.2 GHz

CPU Freq: 1.6 GHz

CPU Freq: 2.0 GHz

CPU Freq: 2.4 GHz

CPU Freq: 2.7 GHz

8192 8900

-2.5

-2

-1.5

4000 4096

-1.5

-1

-0.5

(a) m “ n.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Dictionary Size

-3

-2

-1

0

1

2

3

lo
g
(

T
F
F
T
L
a
s
s
o

T
D
L
−
A
D
M

M
)

Speed Comparison on Different Dictionary Sizes on Pascal

CPU Freq: 1.2 GHz
CPU Freq: 1.6 GHz
CPU Freq: 2.0 GHz
CPU Freq: 2.4 GHz
CPU Freq: 2.7 GHz

8192 8900

-3

-2.5

-2

-1.5

(b) m “ n.

Figure 1. Runtime comparison between FFTLasso-GPU (on TitanX) and DL-ADMM (multi-core) at different CPU frequencies for square
dictionaries (m “ n)

pute both ṽ1, and ṽ2 using lower order FFT as follows:

Fv1 “

m
ÿ

i“0

v1piq exp
´j2πki

m
“

m
ÿ

0,2,4,..

v1piq exp
´j2πki

m

“

m
ÿ

i“0,2,4,..

vep
i

2
q exp

´j2πki

m
“

m
2
ÿ

v“0,1,...

vepiq exp
´j2πki

m
2

“ ṽepiq@i “ 0, 1, ...,m

That means ṽ1 “
“

ṽe ṽe
‰H

which is only a repeated
version of the FFT of m

2 of the even part of v and where
ve “

“

v0 v2 . . .
‰

. A similar trick can be applied to v2

followed by a shift to the right. One can easily show that
ṽ1 “

“

ṽe ṽe
‰H
d p where ppiq “ exp ´j2πki

m @i “
0, 1, ...,m. Therefore,

ṽ “
“

ṽH
e ṽH

e

‰H
`
“

ṽH
o ṽH

o

‰H
d p

Lastly, in here we present the results of both the TitanX
(1.0GHz/core) and TitanX Pascal (1.4GHz/core) experi-
ments comparing FFTLasso to different multi-core CPU
frequencies of DL-ADMM. Figure 1, shows a comparison
between several hardware (GPUs) of FFTLasso against DL-
ADMM on high frequency multi core CPUs. It is clear
that depending on the hardware used and the dictionary A
used one would prefer using DL-ADMM over FFTLasso
and vice versa. However, figure 1 clearly shows incremen-
tal monotone improvement in the speed of FFTLasso as the
dictionary size grows large. Specifically, FFTLasso is most-
ly optimized for any dictionary that is of powers of an inte-
ger radix (in this case radix 2).

3

