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Abstract

There are many scientific, medical and industrial imag-
ing applications where users have full control of the scene
illumination and color reproduction is not the primary ob-
jective. For example, it is possible to co-design sensors and
spectral illumination in order to classify and detect changes
in biological tissues, organic and inorganic materials, and
object surface properties. In this paper, we propose two
different approaches to illuminant spectrum selection for
surface classification. In the first approach, a supervised
framework, we formulate a biconvex optimization problem
where we alternate between optimizing support vector clas-
sifier weights and optimal illuminants. In the second ap-
proach, an unsupervised dimensionality reduction, we de-
scribe and apply a new sparse Principal Component Anal-
ysis (PCA) algorithm. We efficiently solve the non-convex
PCA problem using a convex relaxation and Alternating Di-
rection Method of Multipliers (ADMM). We compare the
classification accuracy of a monochrome imaging sensor
with optimized illuminants to the classification accuracy of
conventional RGB cameras with natural broadband illumi-
nation.

1. Relaxation ADMM solver

The unsupervised illuminant selection algorithm is iter-
ative and operates on the spectral radiance covariance ma-
trix. First, a single optimal, nonnegative projection direc-
tion is computed by solving a relaxed nonnegative sparse
PCA problem using the Alternating Direction Method of
Multipliers (ADMM) [1, 5]. To derive the ADMM solver it
is necessary to represent the nonnegative sparse PCA prob-
lem in an equivalent form

minimize —tr(XY7) +Ix(Y1) + 1(Y2) + || Y21
subjectto BWBT —Y; =0,
BWBT —Y, =0,
(1)

The indicator function Iz, also called a Fantope indicator,
is defined as

I=(Y) = {

The second function I is an indicator function of a matrix
with positive entries
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The ADMM procedure iteratively minimizes the aug-
mented Lagrangian over the variables W, Y7, Y and up-
dates the scaled dual variables U; and Us. The augmented
Lagrangian £, as a function of the optimization variables, is
given by
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where U = (1/p)Z are the scaled dual variables Z and
I - || 7 is the Frobenius norm of a matrix. The constant rep-
resents all the terms that do not depend on the optimization
variables.

The variable W at iteration (¢ + 1) is a solution to an
unconstrained least squares problem,

WO = argmin (| BWBT - v + U" |3
+BWBT - v{" + U3, 5)

which can be efficiently solved using iterative methods [4,
]. The variable Y7 update is given by

Yl(t+1) = arg min(I}-(Yl)
v = (BWEVBT U +3/p) |})

o (WO 0 3),



where P(X) is the Euclidean Fantope projection opera-
tor which can be efficiently computed using the following
lemma [5].

Lemmall If X = ), Niwjul' is a spectral decom-

position of X, then Pr(X) = >, Ai(0)u;ul, where

Ai(0) = min(max(\; —6,0), 1) and 0 satisfies the equation

S Ai(0) = 1.

The variable Y5 update is given by a solution to
Y;Hl) = arg min(aHY2||1 +1I.(Ys)
+2IBW BT —y, — U3
= Hayp (BWODBT + Uf") %)

which is a LASSO problem constrained to nonnegative so-
lutions. It is solved by applying a hinge-loss function [2]

Hayp(z) = (J2] = a/p) (8)

to every entry of BW (+1) BT 4 UQ(t). Finally, an ADMM
iteration is concluded by updating the scaled dual variables

U1(t+1) _ Ul(t) + BWHH BT _ Yl(t+1>
Uty — Ul 4 pwEHHBT _y Y (9

The ADMM solution is now used to deflate the covari-
ance matrix. The deflated covariance matrix is used to de-
rive the next nonnegative, sparse PCA direction.

2. RGB camera emulation

The pixel intensity m, produced by a surface with spec-
tral reflectance r, illuminated with a spectral power distri-
bution of light ¢ and imaged through a color camera filter
with transmissivity c is given by

e — / P(\)i(A)e(A)dA. (10)

Similarly, the pixel intensity m,,, produced by the same sur-
face, but illuminated with a different light = and observed
by a monochrome camera with sensor quantum efficiency ¢
is

—— / (N (\)g(A)d. (11

In our emulation approach we are looking to find such il-
luminant spectral power distribution x so that pixel intensi-
ties produced by color and monochrome cameras are equal;
My = me. Clearly this condition is satisfied when

2(A)g(A) = i(A)e(A). (12)

If we allow z, ¢, ¢ and c to represent vectorized quantities,
sampled at some discrete set of wavelengths, then the illu-
minant x that best emulates a particular camera channel can
be found by solving

minimize ||diag(i)c — diag(q)z||
subject to x > 0, (13)

where diag(x) distributes the vector along a diagonal of a
matrix.

Sometimes, as is the case of this work, there are limi-
tations on the light spectral power distributions that can be
generated with particular hardware used. Let matrix B rep-
resent the set of basis functions that span the realizable set
of illuminants, so that only illuminant spectral power dis-
tributions of the form x = Bw can be generated. The set
of optimal weights w that best approximate a given color
camera can be found by solving

minimize ||diag(i)c — diag(q)Bw]|
subject to Bw > 0. (14)

In this work the matrix B has 8 columns representing the
spectral power distributions of a set of narrowband LEDs
used in the experiments.

3. Emulated camera models

In our conventional camera emulations we used the
spectral responsivity curves of 34 different cameras:
AptinaMTOMO031, AptinaMTIM131, CanonlDMarkIII,
Canon5DMarkll, Canon20D, Canon40D, Canon50D,
Canon60D, Canon300D, Canon500D, Canon600D, Has-
selbladH2, NikonD1, NikonD3, NikonD3X, NikonD40,
NikonD50, NikonD70, NikonD80, NikonD90, NikonD100,
NikonD200, NikonD200IR, NikonD300s, NikonD700,
NikonD5100, NokiaN900, OlympusE-PL2, PentaxK-5,
PentaxQ, PhaseOne, PtGreyGrasshopper50S5C, PtGrey-
Grasshopper214S5C and, SONYNEX-5N. We calibrated
some of these cameras ourselves, while for the remaining
ones we used the measurements of Jiang et al. [3].

4. Classification under broadband illumination

There is little difference in pixel classification perfor-
mance of pixel measurements coming from conventional
cameras and broadband illuminants. The details are shown
in Fig. 1 which presents the classification performance of
an average camera in the Apples scene. This figure is in-
dicative of trends in Pears and Lemons scenes as well. All
algorithms achieve similar performance levels across differ-
ent illuminants.

In general the least performing method is Naive Bayes
classification, which makes strong assumptions about con-
ditional independence in the feature space that may not hold



100

40 + .

Classification accuracy, %

0 I I
SVM KNN DA Tree NB

[ I 10000K [N 6500K [ 4000K [_]2000K —— Ghance |

Figure 1: Pixel classification performance of conventional
(RGB) cameras combined with broadband illumination
(black body radiators at different temperatures). The black
body radiator at 2000K and the Naive Bayes are the least
performing illuminant and algorithm respectively.

true for smooth curves such as surface reflectance spec-
tra. The black body radiator at 2000K is also consistently
slightly worse for classification as it concentrates most en-
ergy at long wavelengths where reflectance spectra tend to
be similar to one another.
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