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This document contains additional information on the
derivative of the task loss function (resp. the expectation
thereof) for the SoftAM and DSAC learning strategies. Fur-
thermore, we illustrate some difficulties of camera local-
ization on the 7-Scenes dataset to motivate the usage of a
RANSAC schema for this problem. Finally, we discuss the
running time of our pipeline, and potential benefits of pre-
dicting multi-modal scene coordinate distributions as future
work.

1. Derivatives

1.1. Soft argmax Selection (SoftAM)

To learn our camera localization pipeline in an end-to-
end fashion, we have to calculate the derivatives of the task
loss function `(R(hw,v

SoftAM, Y w),h∗) w.r.t. to learnable pa-
rameters. In the following, we show the derivative w.r.t.
parameters w, but derivation w.r.t. parameters v works sim-
ilarly.

Applying the chain rule and calculating the total deriva-
tive of R, we get:
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Since hw,v
SoftAM is a weighted average of hypothesis (see

Eq. 4 of the main paper) we can differentiate it as follows:
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Weights P (J |v,w) follow a softmax distribution of hy-
pothesis scores (see Eq. 5 of the main paper).

Hence, we can differentiate as follows:
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1.2. Probabilistic Selection (DSAC)

Using the DSAC strategy, we learn our camera localiza-
tion pipeline by minimizing the expectation of the task loss
function:
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where we use `(·) as a stand-in for `(R(hw,v
J , Y w),h∗).

We differentiate ∂
∂w `(·) following Eq. 1 of this document,

and log probabilities logP (J |v,w) as:
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2. Further Discussions
Difficulty of the 7-Scenes Dataset. Please see Fig. 1 for ex-
amples of difficult situations in the 7-Scenes dataset. In our
experiments, inlier ratios of scene coordinate predictions
range from 5% to 85%. See Fig. 2 (left) for the inlier ratio
distribution over the complete 7-Scenes dataset. In accor-
dance to [2, 1], we consider a scene coordinate prediction
an inlier if it is within 10cm of the ground truth scene coor-
dinate. In Fig. 2 (right) we plot the performance of DSAC
against the ratio of inliers. For comparison we plot the per-
formance of a naive approach without RANSAC (pose fit to
all scene coordinate predictions).
Test Time. The scene coordinate prediction takes ∼0.5s on
a Tesla K80 GPU. Pose optimization takes ∼1s. The run-



time of argmax hypothesis selection (RANSAC) or proba-
bilistic selection (DSAC) is identical and negligible.

Multi-Modality. Compared to Brachmann et al. [1], our
pipeline performs not as well on the Stairs scene (see Table
1 of the main paper). We account this to the fact that the
Coordinate CNN predicts only uni-modal point estimates,
whereas the random forest of [1] predicts multi-modal scene
coordinate distributions. The Stairs scene contains many re-
peating structures, so we expect multi-modal predictions to
help. We also expect bad performance of the SoftAM strat-
egy in case pose hypothesis distributions are multi-modal,
because an average is likely to be a bad representation of
either mode. In contrast, DSAC can probabilistically select
the correct mode. We conclude that multi-modality in scene
coordinate predictions and pose hypothesis distributions is
a promising direction for future work.
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Figure 1. Difficult frames within the 7-Scenes dataset: Texture-
less surfaces (upper left), motion blur (upper right), reflections
(lower left), and repeating structures (lower right). DSAC esti-
mates the correct pose in all 4 cases.
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Figure 2. Distribution of inlier ratios of our scene coordinate pre-
dictions (left), and corresponding pose estimation accuracy of
DSAC compared to a naive approach without RANSAC (right).


