
Supplementary Material for “Hyper-Laplacian Regularized Unidirectional
Low-rank Tensor Recovery for Multispectral Image Denoising”

1. Solution to Problem (6) in Main Text
The original problem is shown as follow:
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X
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The main difficulty for the Fourier transform in (1) lies in the fact that X is involved with the cubic operation Ri. Thus, it
is natural for us to split the X in the third term from other terms. We introduce another auxiliary variable Z , by applying
ADMM to (1), we obtain{
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where Z ∈ RM×N×B is an auxiliary variable, J 1 is the Lagrangian multiplier, β and is a positive scalar. The optimization
of (2) consists of the following iterations:
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β(l+1) = ρβ(l+1),

(3)

where ρ > 1 is a constant. Thus the variables X and Z can be solved with closed-form solution efficiently:
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where F (•) denotes the n-D fast Fourier transform and F−1 (•) the inverse transform, I is the identity tensor, RT
i Ri

means the number of overlapping cubics that cover the pixel location, and RT
i Li means the sum value of all overlapping

reconstruction cubics that cover the pixel location. Thus, Eq. (4) can be computed in Fourier domain and Eq. (5) can be
computed in pixel-to-pixel level division with tensor format. In fact, the two auxiliary variables D in main text and Z in this
supplementary can be introduced at the same time, without any sequence. Due to the page limitation, we place the solution
of Z in the supplementary.

2. Extension to LLRT-RPCA
As the reviewers concerned, the real noises in HSI are always complex with more than random noise. Indeed, the stripe

line noise is another issue, which usually coexists with the random noise. To some degree, once the stripe arises in the HSI,
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Algorithm 1 The hyper-Laplacian regularized unidirectional low-rank tensor (LLRT) algorithm
Require: Input image Y

1: Initialize:
2: • Set parameters µ, α, ω and the noise level;
3: • Set J(1) = 0, J(1)

1 = 0;
4: • Similar cubics grouping for each target cubic to form the 3-order tensor;
5: for n=1:N do
6: obtain Li by solving Eq. (3)(main manuscript);
7: for (Solving Eq. (4)(main manuscript)) l=1:L do
8: Solve Eq. (5) for D(l+1)(main manuscript);
9: Solve Eq. (3) for X (l+1) and Z(l+1)(Supplementary);

10: end for
11: If mod(n, T)=0, update cubic grouping;
12: Output the clear image X if n = N.
13: end for
Ensure: Clean Image X .

it is more urgent to remove them than the random noise. In recent years, the stripe noise removal has received more and
more attention. For [5, 1, 3], this kind of methods hold the point that the stripe line is an structure noise, and introduce
the mixture of Gaussians (MoG) noise assumption also its variants to adapt the real noise characteristics of natural HSI, so
as to accommodate various noise shapes encountered in real applications. Another research direction starts from the image
decomposition perspective [7, 4, 2], in which the stripe noise is regarded as an structural line pattern component, equally
treated with the image component. Our LLRT-RPCA method follows the image decomposition manner. Thus, the problem
can be transferred to how to construct two reasonable measurements to differ the image component from the stripe component.
In the main paper, we have given the detailed analysis about the key prior for the MSI image component modeling. And the
focus of this paper is to address the image modeling issue. As for the stripe component modeling, it is out the scope of this
work. The relevant work has been submitted recently. Interested readers may keep an eye on our future work. Here we just
introduce the common used L1 norm for the stripe component, just as the classical RPCA [6] regularizing the gross error:{

X̂ , L̂i, Ê
}
= arg min

X ,Li,E

1

2
||X + E −Y ||2F + µ||∇zX ||p + ω
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||RiX −Li||2F + rank2(Li)

)
+ τ ||E||1, (6)

where E represents the gross error namely the stripe noise, and τ is the regularization parameter. The optimization is similar
to that of LLRT, with additional step for the gross error E .

3. More results
In this document, we present more noise removal results, which are not included in the main paper due to page limit.

3.1. Simulated Experimental Results

Figure 1 to Figure 5 present five visual comparison results of various methods on simulated hyperspectral and color images
under different noise levels. From the visual results, we can observe that the proposed LLRT method consistently obtains
the best performance in terms of both finer-grained textures and coarser-grained structures for different multispectral images.
For the quantitative results, LLRT outperforms the second best results ISTReg by a large marginal. In Fig. 6, we plot the
PSNR values of each band of one single image cloth. In Fig. 7, we plot the average PSNR values of all bands of each image.
For each band and each image, our method consistently obtains the best result.

3.2. Real Experimental Results

Figure 8 and Figure 9 present two visual comparison results of various methods on real hyperspectral and color image,
respectively. It can be observed that the images restored by our method are more visually pleasant with more detailed
information and less color distortion artifact. Further, we test the LLRT-RPCA method on the mixed noisy HSI dataset
Urban, and the results are shown in Fig. 10.



3.3. The Analysis of Tensor Low-rank Prior Along Each Mode

The non-local patch number dimension is more evidently low-rank (here we give another example image clay as shown
in Fig. 11), and neglecting others can help improve efficiency. However, it might be not so rational that neglecting other
useful low-rankness along other dimensions, especially in spectrum, can help improve MSI recovery quality. In our paper,
we capture the most low-rank subspace along the non-local mode. Here, we give a detailed comparison of the combination
of low-rank prior along each mode, as shown in Fig. 12. Here, we have following observations.

• For single mode-based low-rank prior (red, purple, green curve), we can find that the non-local self-similarity mode
achieved the best performance, which further validates the conclusion in the main paper: the structure correlation
along the non-local self-similarity mode is much stronger than that of the spatial or spectral mode.

• The spatial mode low-rank always bring negative influence to the final performance (compare purple and cyan, also
grey and blue), since we have stated in the main paper that their low-rank assumptions cannot be met.

• The spectral mode low-rank does facilitate the final recovery result (compare purple and grey). That is to say the
spectral correlation spectral correlation property can facilitate the MSI recovery results.

• In this work, we introduce the patch-free hyper-Laplacian prior to model the spectral correlation. The grey (nonlocal
+ spectral low-rank) and yellow (proposed hyper-Laplacian regularized nonlocal low-rank) curves have achieved the
best two performances. However, the processing time of the proposed method is much less than that of the grey curve,
since the additional SVD operation occupied much of the processing time.

From the above analysis, we can conclude that the non-local self-similarity is the key property contributing to MSI denoising
performance, and the spectral correlation property does facilitate the final recovery result. Our focus is not about the specific
priors but why and how we use them in reasonable manner for MSI modeling. Here, we choose the hyper-Laplacian to model
the spectral correlation not the low-rank, is for one hand to reduce the processing time, and for the other hand to suppress the
visual ringing artifact.
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(a) Original Image (b) Noisy Image (c) BM3D (d) SDS
(PSNR, SSIM) (28.13, 0.4223) (42.47, 0.9685) (39.54, 0.9459)

(e) LRTA (f) LRMR
(40.62, 0.9385) (39.60, 0.9012)

(h) NMF(g) ANLM
(42.03, 0.9590) (43.25, 0.9665)

(l) LLRT(k) ISTReg(i) BM4D (j) TDL
(45.49, 0.9817) (44.36, 0.9795) (46.85, 0.9881)(45.30, 0.9830)

Figure 1. Simulated random noise removal results at 510nm band of image Food under noise level λ2=10 on CAVE dataset.



(a) Original Image (b) Noisy Image (c) BM3D (d) SDS
(PSNR, SSIM) (18.58, 0.2186) (29.46, 0.7469) (29.89, 0.7233)

(e) LRTA (f) LRMR
(30.60, 0.7557) (30.12, 0.7436)

(h) NMF(g) ANLM
(30.80, 0.7857) (32.86, 0.8447)

(l) LLRT(k) ISTReg(i) BM4D (j) TDL
(33.31, 0.8761) (33.39, 0.8841) (35.71, 0.9221)(34.06, 0.8887)

Figure 2. Simulated random noise removal results at 510nm band of image Cloth under noise level λ2=30 on CAVE dataset.



(a) Original Image (b) Noisy Image (c) BM3D (d) SDS
(PSNR, SSIM)  (8.13, 0.0285) (26.38, 0.7087) (18.24, 0.1799)

(e) LRTA (f) LRMR
(26.70, 0.6587) (21.66, 0.3131)

(h) NMF(g) ANLM
(24.60, 0.4129) (26.72, 0.5506)

(l) LLRT(k) ISTReg(i) BM4D (j) TDL
(29.27, 0.7779) (29.30, 0.8181) (31.06, 0.8813)(29.76, 0.8540)

Figure 3. Simulated random noise removal results at 510nm band of image Watercolor under noise level λ2=100 on CAVE dataset.



(a) Original (PSNR:dB) (b) Noisy (22.11) (c) WNNM (29.60)

(d) LSCD (30.57) (e) CBM3D (31.66) (f) LLRT (31.93)

Figure 4. Simulated color image Fox results under noise level λ2=20 on BSD dataset.

(a) Original (PSNR:dB) (b) Noisy (18.59) (c) WNNM (26.53)

(d) LSCD (26.68) (e) CBM3D (28.54) (f) LLRT (28.91)

Figure 5. Simulated color image Building results under noise level λ2=30 on BSD dataset.



0 5 10 15 20 25 30
15

20

25

30

35

40

45

Band Index

P
S

N
R

 V
al

u
es

 

 

Noisy

BM3D
SDS
LRTA
LRMR
ANLM
NMF
BM4D
TDL
ISTReg
LLRT

Figure 6. PSNR values of each band of image Cloth under noise level λ2=30 on CAVE dataset.
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Figure 7. Average PSNR values of all bands of each image under noise level λ2=30 on CAVE dataset.



(a) Noisy Image (c) SDS(b) BM3D

(j) LLRT(f) NMF

(d) LRMR (e) ANLM

(g) BM4D (h) TDL (i) ISTReg

Figure 8. Real random noise removal results at 430nm band of image Walls on HHD dataset.

(a) Noisy (b) WNNM (c) LSCD (d) CBM3D (e) LLRT 

Figure 9. A real color image noise removal results.



(a) Noisy Band 204 (b) BM4D

(e) TDL

(c) PARAFAC (d) ANLM

(f) LRMR (g) MoG (h) LLRT-RPCA

Figure 10. A real HSI mixed noisy removal results.
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Figure 11. Low-rank property analysis of the constructed 3-order tensor along each mode via HOSVD.
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Figure 12. Effectiveness of low-rank prior along each mode and their combination.


