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A Appendix

A.1 Time-Adaptation of Hidden Features (Eq. 4)
Here we derive the approximation of the first layer activations SH(N t) given photon
count image up to time t∆ (Eq. 4), copied as below:

SH(N t) ≈ α(t)WN t + β(t) (A.1)

Recall that we put a Gamma prior on the photon emission rate λi at pixel i:

P (λi) = Gam(µiτ, τ) (A.2)

where µi is the prior mean rate at pixel i.
After observing Nt,i of pixel i in time [0, t∆], the posterior estimate for the photon

emission rate is:

P (λi|Nt,i) ∝ P (Nt,i|λi)P (λi) (A.3)
= Gam(µiτ +Nt,i, τ + t) (A.4)

which has a posterior mean of:

λ̂i
4
= E[λi|Nt,i] =

µiτ +Nt,i
τ + t

(A.5)

Intuitively, the emission rate is estimated via a smoothed-average of the observed counts.
Collectively the expected photon counts ∆N over all pixels and duration (t∆, T∆)
given the observed photonsN t are:

E[∆N |N t] =
µτ +N t

τ + t
(T − t) (A.6)
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where µ is the mean rate vector of all pixels.
Therefore SH(N t) may be approximated up to second order accuracy using:

SH(N t) =
∑
∆N

(W (N t + ∆N) + bH)P (∆N |N t) (A.7)

≈W (N t + E[∆N |N t]) + bH (A.8)

= W (N t +
µτ +N t

τ + t
(T − t)) + bH (A.9)

=
T + τ

t+ τ︸ ︷︷ ︸
α(t)

WN t + τ
T − t
τ + t

Wµ+ bH︸ ︷︷ ︸
β(t)

(A.10)

which proves Eq. 4.
The equation above works for weights W that span the entire image. In ConvNet,

the weights are instead localized (e.g. occupying only a 5 × 5 region), and organized
into groups (e.g. the first layer in WaldNet for CIFAR10 uses 32 features groups). For
simplicity we assume that the mean image µ is translational invariant within 5 × 5
regions, so that we only need to model one scalar βj(t) for each feature map Wj .

A.2 Relationship between exposure time and number of bits of sig-
nal

Bits of signal and photon counts are equivalent concepts. Furthermore, that photon
counts are linearly related to exposure time. Here to derive the relationship between
exposure time and the number of bits of signal. To simplify the analysis we will make
the assumption that our imaging setup has a constant aperture.

What does it mean for an image to have a given number of bits of signal? Each
pixel is a random variable reproducing the brightness of a piece of the scene up to some
noise. There are two main sources of noise: the electronics and the quantum nature of
light. We will assume that for bright pixels the main source of noise is light. This is
because, as will be clear from our experiments, a fairly small number of bits per pixel
are needed for visual classification, and current image sensors and AD converters are
more accurate than that.

According to the Poisson noise model (Eq. 1 in main text), each pixel receives
photons at rate λ. The expected number of photons collected during a time t is λt and
the standard deviation is σ =

√
λt. We will ignore the issue of quantum efficiency

(QE), i.e. the conversion rate from photons to electrons on the pixel’s capacitor, and
assume that QE=1 to simplify the notation (real QEs may range from 0.5 to 0.8). Thus,
the SNR of a pixel is SNR = λt/

√
λt =

√
λt and the number of bits of signal is

b = log2

√
λt = 0.5 log2 λ+ 0.5 log2 t.

The value of λ depends on the amount of light that is present. This may change
dramatically: from 10−3 LUX in a moonless night to 105 LUX in bright direct sunlight.
With a typical camera one may obtain a good quality image in a well lit indoor scene
(Ev ≈ 300 lux) with an exposure time of 1/30s. If a bright pixel has 6.5 bits of signal,
the noise is 2−6.5 ≈ 1% of the dynamic range and λt/

√
λt = 100, i.e. λ ≈ 3 · 105 ≈
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Illuminance exposure time t (s)
Scene Ev (LUX) 1/500 1/128 1/8 1 8 60
Moonless 10−3 1.5 3
Full moon 1 0.5 1.5 3.5 5 6.5 8
Office 250 4.5 5.5 7.5 9 10.5 12
Overcast 103 5.5 6.5 8.5 10 11.5 13
Bright sun 105 9 10 12 13.5 15 16.5

Table 1: (Approximate) number of bits of signal per pixel under different illuminance
levels. For instance, in an office scene it takes 1/8 seconds to obtains a 7.5-bit image.
Under full moon, the same high-quality image and the same sensor needs > 8 seconds
to capture.
103Ev ≈ 210Ev . Substituting this calculation of λ into the expression derived in the
previous paragraph we obtain b ≈ 5 + 1

2 log2 t + 1
2 log2 Ev , which is what we used to

generate table 1.

A.3 Learning dynamic threshold for Bayes risk minimiziation (Eq. 7)
Here we show how thresholds τη(t) relate to Bayes risk (Eq. 5) in the free-response
regime with a cost of time η. The key is to compute R(n)

t , the cumulative future risk
from time t for the n-th exampleN (n)

t with label C(n). At every point in time, the clas-
sifier first incurs a cost η (assuming time unit of 1) in collecting photons for this time
point. Then the classifier either report a result according to Sc(N

(n)
t ), incurring a lost

when the predicted label is wrong, or decides to postpone the decision till later, incur-
ring lostR(n)

t+1. Which one of the two paths to take is determined by whether the max log
posterior crosses the dynamic threshold τη(t). Therefore, let c∗ = arg maxc Sc(N

(n)
t )

be the class with the maximum log posterior, the recursion is:

R
(n)
t = η∆ + I[Sc∗(N

(n)
t ) > τη(t)][c∗ 6= C(n)] + I[Sc∗(N

(n)
t ) ≤ τη(t)]R

(n)
t+1

(A.11)

= η∆ + q
(n)
t e

(n)
t + (1− q(n)

t )R
(n)
t+1 (A.12)

and we assume that a decision must be taken after finite amount of time, i.e. R(n)
∞ =

η∆ + e
(n)
∞ . This proves Eq. 7.

A.4 Spiking recurrent neural network implementation
Here we show that the recurrent dynamics described in Eq. 8 implements the ap-
proximation of the first hidden layer activations in Eq. 4. We use V (t) to denote
the membrane potential in the spiking network. The proof is constructive: assume
that at time (t − 1)∆, the membrane potential V (t − 1) computes SH(N t−1), i.e.
V (t − 1) = α(t − 1)WN t−1 + β(t − 1), then the membrane potential at time t∆
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satisfies:

V (t) = r(t)V (t− 1) + α(t)WXt + l(t) (A.13)
= r(t) (α(t− 1)WN t−1 + β(t− 1)) + α(t)WXt + β(t)− r(t)β(t− 1)

(A.14)

=
α(t)

α(t− 1)
α(t− 1)WN t−1 + α(t)WXt + β(t) (A.15)

= α(t)W (N t−1 + Xt) + β(t) = α(t)WN t + β(t) = SH(N t) (A.16)

Hence proving Eq. 8.

A.5 Datasets
MNIST contains gray-scaled 28 × 28 images of 10 hand-written digits. It has 60k
training and 10k test images. We treat the pixel values as the ground truth intensity1.
Dark current εdc = 3%. We use the default LeNet architecture from the MatConvNet
package [3] with batch normalization [2] after each convolution layer. The architecture
is 784-20-50-500-102 with 5× 5 receptive fields and 2× 2 pooling.

CIFAR10 contains 32 × 32 color images of 10 visual categories. It has 50k train-
ing and 10k test images. We use the same sythensis procedure above to each color
channel3. We again use the default 1024-32-32-64-10 LeNet architecture [1] with batch
normalization. We use the same setting prescribed in [1] to achieve 18% test error on
normal lighting conditions. [1] uses local contrast normalization and ZCA whitening
as preprocessing steps. We estimate the local contrast and ZCA from normal lighting
images and transforming them according to the lowlight model to preprocess scotopic
images.

A.6 Training
We train all models for MNIST and CIFAR10 using stochastic gradient descent with
mini-batches of size 100. For MNIST, we use 5k training examples for validation and
train on the remaining 55k examples for 80 iterations. We found that empirically a
learning rate of 0.004 works best for WaldNet, and 0.001 works best for the other ar-
chitectures. As CIFAR10 is relatively data-limited, we do not use a validate set and
instead train all models for 75 epochs, where the learning rate is 0.05 for 30 iterations,
0.005 for other 25 then 0.0005 for the rest. Again, quadrupling the learning rate empir-
ically improves WaldNet’s performance but not the other architectures.

Our implementation is based on MatCovNet [3], and will be released upon accep-
tance.

1The brightest image we synthesize has about 28 photons, which corresponds to a pixel-wise maximum
signal-to-noise ratio of 16 (4-bit accuracy), whereas the original MNIST images has (7 to 8-bit accuracy) that
corresponds to 214 to 216 photons.

2The first and last number represent the input and output dimension, each number in between represents
the number of feature maps used for that layer. The number of units is the product of the number of features
maps with the size of the input.

3For simplicity we do not model the Bayer filter mosaic.
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In step one of learning, the scalar functions α(t) and βj(t) in Eq. 4 are learned as
follows. As the inputs to the network are preprocessed, the preprocessing steps alter the
algebraic form for α and β. For flexibility we do not impose parametric forms on α and
β, but represent them with piecewise cubic Hermite interpolating polynomials with four
end points at PPP= [.22, 2.2, 22, 220] (interpolants coded in log-scale). We learned the
adapted weights at these end-points by using a different batch normalization module for
each PPP. At test time the parameters of the modules are interpolated to accommodate
other PPP levels.

In step two of learning, we compute SH(N t) for 50 uniformly spaced PPPs in log
scale, and train thresholds τ(t) for each PPP and for each η. A regularizer 0.01

∑
t ||τ(t)−

τ(t + 1)||2 is imposed on the thresholds τ(t) to enforce smoothness. The steepness of
Sigmoid σ is annealed over 500 iterations of gradient descent, with initial value 0.5, a
decay rate of 0.99 and a floor value of 0.01.

A.7 Rotational jitter
To investigate WaldNet’s robustness to camera motion, we inject a rotational jitter
to the photon streams. The rotation at PPP follows a normal distribution: ∆θ ∼
N (0,

(
σθPPP

220

)2
), where σθ controls the level of jitter. e.g. σθ = 22◦ means that at

PPP = 220, the total amount of rotation applied to the image has an std of 22◦. The
result is shown in Fig. 5a,b.
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