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1. Additional Results

Figures 2 and 3 contain additional results of face nor-
malization on LFW and comparison to Hassner et al. [1].

Figure 4 show results from degraded photographs and
illustrations, which push the method outside of its training
domain but still produce credible results.

2. 3-D Model Fitting

To fit the shape of the face, we first manually establish a
correspondence between the 65 predicted landmarks 1; and
the best matching 65 vertices v; of the 3-D mesh used to
train the model of Blanz and Vetter [2]. This correspon-
dence is based on the semantics of the landmarks and does
not change for different faces. We then optimize for the
shape parameters that best match v; to 1; using gradient de-
scent. The landmarks provide 65 x 2 = 130 constraints
for the 199 parameters of the morphable model, so the op-
timization is additionally regularized towards the average
face.

Once the face mesh is aligned with the predicted land-
marks, we project the synthesized image onto the mesh as
vertex colors. The projection works well for areas that are
close to front-facing, but is noisy and imprecise at grazing
angles. To clean the result, we project the colors further
onto the model’s texture basis to produce clean, but less ac-
curate vertex colors. We then produce a final vertex color by
blending the synthesized image color and the texture basis
color based on the foreshortening angle.

2.1. Corresponding Landmarks and Vertices

As a pre-processing step, we determine which 65 ver-
tices of the shape model’s mesh best match the 65 landmark
positions. Since the topology of the mesh doesn’t change as
the shape changes, the correspondence between landmark
indices and vertex indices is fixed.

The correspondence could be determined completely
manually, but we choose to find the it automatically by ren-
dering the mean face and extracting landmarks from the ren-
dered image (Fig 1).

Figure 1. Landmarks extracted from the mean face of the Blanz
and Vetter model.

The corresponding vertex for each landmark is found
by measuring screen-space distance between the computed
landmarks and the projected vertices. This projection is
noisy around grazing angles and may pick back-facing ver-
tices or other poor choices. To make the correspondence
cleaner, we compute the correspondences separately for
multiple, randomly jittered camera matrices, then use vot-
ing to determine the most stable matching vertex for each
landmark. The final result is a set of 65 vertex indices.

2.2. Shape Fitting

Given a set of 65 X 2 matrix of landmark points L, our
goal is to optimize for the best matching set of 199 shape
coefficients s. To find s, we imagine that the landmarks L
are the projection of their corresponding vertices V', where
the 65 x 2 matrix V' is defined by the shape parameters s, a
translation vector t, a uniform scaling factor o, and a fixed
projection matrix P, as follows.

Let the 65 x 3 matrix of object-space vertex positions V,,
be:

Ve = [B“’s BYs st] + i €))

where B¥¥>* are the 65 x 199 morphable model basis
matrices and p is the 65 x 3 matrix of mean vertex positions.
The 4 x 4 projection matrix P is a perspective projection
with a field of view of 10° to roughly match the perspective
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of the training images. The 4 x 4 modelview matrix M is
defined by the translation t and scaling o as:

c 0 0 t*
0 o 0 ¥
M= 0 0 o t? @)
0 0 0 1
Given P and M, the 65 x 4 matrix of post-projection

vertices V), is defined as:

V= [V 1] MTPT 3)
and the final, 65 x 2 vertex position matrix V' is found
by perspective division:

v-le ¥ )
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where x,, y,, and w, are first, second, and fourth
columns of V/,.

Finally, we optimize for s using gradient descent with
the loss function:

f(s) = IL = V[* + Alls|* 5)

where length term for s regularizes the optimization to-
wards the mean face (i.e., s = 0), and A\ = 0.001 in our
experiments.

2.3. Fitting Texture

Once the shape parameters and pose of the model are
found, we project the remaining ~ 53K vertices of the mesh
onto the synthesized face image. The projection produces a
53K x 3 matrix of vertex colors C),.

Due to noise in the synthesized image and the inherent
inaccuracy of projection at grazing angles, the colors C),
have ugly artifacts. To repair the artifacts, we compute a
confidence value ¢; at each vertex that downweights ver-
tices outside the facial landmarks and vertices at grazing
angles:

o = m(zi,y;)(1.0 —n?) (6)

where m is a mask image that is 1 inside the convex hull
of the landmark points and smoothly decays to O outside,
and n? is the z component of the 7*" vertex normal.

Using the confidences, we project the vertex colors C),
onto the morphable model color basis. Let ¢, be the 160K
vector produced by flattening C),, a be the 160K vector pro-
duced by repeating the confidences «a; for each color chan-
nel, and A be the 160K x 199 matrix of confidences pro-
duced by tiling a. The 199 color parameters z are found
by solving an over-constrained linear system in the least-
squares sense:

(@] o [(en=g0o] -

where o represents the element-wise product, B is the
160K x 199 color basis matrix, [ is the identity matrix, u
is the model’s mean color vector, and \ is a regularization
constant.
The flattened model color vector c; is found by un-
projecting z:
c, =Blz+p (8)

and the final flattened color vector c is defined by inter-
polating between the projected and model colors:

c=cpoa+t+c,o(l—a) )

3. Automatic Photo Adjustment

Let mp and my be the mean face colors for the input
and normalized images, respectively. Our adjusted image is
computed using a per-channel, piecewise-linear color shift
function 7°(p) over the pixels of P:

if p¢<=m$ }

p°
r(p) = —mf
1—(1-p9 X if p®>m§,

c
1-m%

(10)
where c are the color channels. We chose YCrCb as the
color representation in our experiments.
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Figure 2. Additional face normalization results for the LFW dataset [3]. Top: input photographs. Middle: result of our method for FaceNet
“avgpool-0” and VGG-Face “fc7” features. Bottom: result of Hassner et al. [1].
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Figure 4. Though the model was only trained on natural images, it is robust enough to be applied to degraded photographs and illustrations.
Column 1: input image. Column 2: generated 2-D image. Columns 3 and 4: images of 3-D reconstruction taken from 2 different angles.



