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In this supplemental document, we show additional
statistics and comparisons for ScanNet. We compare to sim-
ilar datasets (Sec. 1), provide additional technical details on
evaluation tasks and benchmarks (Sec. 2), and provide fur-
ther detail on the design of our RGB-D reconstruction and
annotation framework (Sec. 3).

1. Dataset Statistics and Comparisons
In this section, we provide thorough statistics on the

construction and composition of ScanNet dataset, and also
compare it to the most similar datasets from prior work.

1.1. Example Annotated Reconstructions

Fig. 1 shows six example annotated reconstructions for
a variety of spaces. For each reconstruction, the surface
mesh with colors is shown, as well as a visualization with
category labels for each object collected using our crowd-
sourced annotation interface. Category labels are consistent
between spaces and are mapped to WordNet [6] synsets. In
addition to the category label, separate object instance la-
bels are also available to indicate multiple instances of a
given category, such as distinct chairs around a conference
table in the fourth row of Fig. 1.

Fig. 2 shows a larger set of reconstructed spaces in Scan-
Net to illustrate the variety of spaces that are part of the
dataset. The scans range from small spaces with just a few
objects (e.g., toilets), to large areas with dozens of objects
(e.g., classrooms and studio apartments).

1.2. Dataset Construction Statistics

The construction of ScanNet was carried out with the
RGB-D acquisition and annotation framework described in
the main paper. In order to provide an intuition of the
scalability of our framework, we report timing statistics
for both the reconstruction and annotation steps. The me-
dian reconstruction processing time (including data conver-
sion, dense voxel fusion, surface mesh extraction, align-
ment, cleanup, and preview thumbnail image rendering) is
11.3min for each scene. A few outliers exist with signifi-
cantly higher processing times (on the order of hours), due

to unplanned processing server downtime during our data
collection (mainly software updates), resulting in a higher
mean reconstruction time of 14.9min.

After reconstruction is complete, each scan is annotated
by several crowd workers on Amazon Mechanical Turk (2.3
workers on average per scan). The median annotation time
per crowd worker is 12.0min (mean time is 17.3min, again
due to a few outlier workers who take significantly longer).
Aggregating the time taken across workers for annotating
each of the 1513 scans in ScanNet, the median time per
scan is 16.8min, and the mean time per scan is 22.3min.

1.3. Dataset Composition Statistics

The construction of the ScanNet dataset is motivated by
the lack of large, annotated, densely reconstructed RGB-D
dataset of 3D scenes that are publicly available in the aca-
demic community. Existing RGB-D datasets either have
full scene-level annotations only for a subset of RGB-D
frames (e.g., NYU v2 depth [8]), or they focus on anno-
tating decontextualized objects and not scenes (e.g., Choi et
al. [3]). The two datasets that do annotate densely recon-
structed RGB-D spaces at the scene level are the SceneNN
dataset by Hua et al. [7] and the smaller PiGraphs dataset
by Savva et al. [10].

SceneNN consists of 94 RGB-D scans captured using
Asus Xtion Pro devices and reconstructed with the method
of Choi et al. [2]. The resulting densely-fused surface
meshes are fully segmented at the level of meaningful ob-
jects. However, only a small set of segments are annotated
with semantic labels. On the other hand, the PiGraphs [10]
dataset consists of 26 RGB-D scans captured with Kinect v1
devices and reconstructed with the VoxelHashing approach
of Nießner et al. [9]. This dataset has more complete and
clean semantic labels, including object parts and object in-
stances. However, it contains very few scenes and is limited
in the variety of environments, consisting mostly of offices
and conference rooms. To illustrate the large gap in quan-
tity of annotated semantic labels between these two datasets
and ScanNet, Fig. 3 plots histograms of the total number of
labeled object instances and the total numbers of unique se-
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Figure 1. Example annotated scans in ScanNet. Left: reconstructed surface mesh with original colors. Middle: color indicates category
label consistently across all scans. Right: each object instance shown with a different randomly assigned color.



Figure 2. A variety of example annotated scans in ScanNet. Colors indicate category consistently across all scans.
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Figure 3. Histograms of the total number of objects labeled per scan (top) and total number of unique labels per scan (bottom) in the
PiGraphs [10], SceneNN [7] and our dataset (ScanNet). The histograms show that ScanNet has many annotated objects over a larger
number of scans, ranging in complexity with regards to the total number of objets per scan.



ScanNet

Category Count

wall 6226
chair 4279
floor 3212
table 2223
door 1181
couch 1048
cabinet 937
desk 733
shelf 732
bed 699
office chair 669
trashcan 561
pillow 490
sink 470
window 398
toilet 397
picture 351
bookshelf 328
monitor 308
curtain 280
computer 274
armchair 264
bathtub 253
coffee table 239
box 231
dining chair 230
refrigerator 226
book 221
lamp 218
towel 216
kitchen cabinet 203
drawer 202
tv 187
nightstand 182
counter 179
dresser 177
clothes 164
countertop 163
stool 130
plant 130
cushion 116
ceiling 114
bedframe 111
keyboard 107
end table 105
toilet paper 104
bag 104
backpack 100
blanket 94
dining table 94

SceneNN [7]

Category Count

chair 194
table 53
floor 44
seat 41
desk 39
monitor 31
sofa 25
cabinet 25
door 24
box 23
keyboard 23
trash bin 21
wall 20
pillow 19
fridge 18
stand 18
bag 17
bed 16
window 14
sink 13
printer 12
computer 12
chair01 12
desk1 11
monitor01 10
shelves 10
shelf 10
chair1 10
chair02 10
fan 9
basket 9
desk2 9
laptop 9
trashbin 9
kettle 9
microwave 9
monitor1 8
stove 8
chair2 8
bike 7
blanket 7
drawer 7
lamp 7
wall02 7
wall01 7
wall04 7
backpack 7
cup 7
chair3 7
whiteboard 7

Table 1. Total counts of annotated object instances of the 50 largest
categories in ScanNet (left), and in SceneNN [7] (right), the most
similar annotated RGB-D reconstruction dataset. ScanNet con-
tains far more annotated object instances, and the annotated la-
bels are processed for consistency to remove duplicates such as
“chair01” in SceneNN.

mantic labels for each scan.
In order to demonstrate how our category labels map

to other data, we plot the distribution of annotated object
labels corresponded to the ShapeNetCore 3D CAD model

Figure 4. Top 25 most frequent annotation labels in ScanNet scans
mapped to ShapeNetCore classes. ScanNet has thousands of 3D
reconstructed instances of common objects such as chairs, tables,
and cabinets.

categories in Fig. 4. This mapping is leveraged during
our CAD model alignment and retrieval task to automati-
cally suggest instances of CAD models from ShapeNet that
match the label of a given object category in the reconstruc-
tion.

We can also obtain 2D annotations on the input RGB-D
sequences by projecting our 3D annotations into each frame
using the corresponding camera pose. This way, we ob-
tain an average of 76% annotation coverage of all pixels per
scene by using the previously obtained 3D annotations.

1.4. NYUv2 Reconstruction and Comparison

Here, we discuss how ScanNet relates to NYUv2, one of
the most popular RGB-D dataset with annotations. In order
to compare the data in ScanNet with the data in NYUv2,
we reconstructed and annotated all the RGB-D sequences
in NYUv2 using our framework. (Note that for 9 sequences
of the NYUv2 dataset, our framework did not obtain valid
camera poses for > 50% of the frames, so we did not com-
pute reconstructions and annotations for these sequences.)
Moreover, we created a set of surface mesh semantic anno-
tations for the NYUv2 reconstructions by projecting every
pixel of the annotated RGB-D frames with valid depth and
label into world space using our computed camera poses,
and assigning the corresponding object label to the clos-
est surface mesh vertices (within 0.04cm, using a kd-tree
lookup).

We then compare the total surface area of the recon-
structed meshes that was annotated using projection from
the annotated NYUv2 frames, and using our annotation
pipeline. Fig. 5 plots the percentage of reconstructed sur-
faces in NYUv2 that were annotated with each approach,
as well as the percentage distribution for the ScanNet re-
constructions for comparison. Note that we exclude the 9
sequences for which we do not have enough valid camera
poses.

A noticeable difference between the RGB-D sequences
in NYUv2 and those in ScanNet is that overall, the ScanNet
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Figure 5. Histograms of the percentage of total reconstruction surface area per scan that is semantically labeled for: NYU v2 reconstructions
using projection of RGB-D annotated frames (left), for NYU v2 reconstructions using our 3D annotation interface (middle), and for
ScanNet reconstructions similarly annotated with our interface (right).

sequences are more complete surface reconstructions of the
real-world spaces. Most importantly, the NYUv2 original
frames in general do not cover a sufficient number of view-
points of the space to ensure full reconstruction of semanti-
cally meaningful complete objects. Fig. 6 shows a compar-
ison of several reconstructed scenes from NYUv2 RGB-D
sequences vs comparable reconstructions from ScanNet. As
shown in the top-down views, the NYU reconstructions are
much more sparse than the ScanNet reconstructions. This
disparity makes a more direct comparison with ScanNet re-
constructions hard to quantify. However, we can conclude
that projecting the annotated NYUv2 RGB-D frames to re-
constructions is not sufficient to semantically annotate the
spaces, as is clear from the far lower surface coverage dis-
tribution for NYUv2 in Fig. 5.

2. Tasks
Here we provide more details about the 3D scene under-

standing tasks and benchmarks discussed in the main paper.

2.1. Semantic Voxel Labeling

For the semantic voxel labeling task, we propose a net-
work which predicts class labels for each column of a vox-
elized scene. As shown in Fig. 7, our network takes as input
a 2 × 31 × 31 × 62 volume and uses a series of fully con-
volutional layers to simultaneously predict class scores for
the center column of 62 voxels. We leverage information
from the voxel neighborhood of both occupied space (vox-
els on the surface) and known space (voxels in front of a
surface according to the camera trajectory) to describe the
input partial data from a scan.

At test time, we slide the network through a scan through
a voxelized scan along the xy-plane, and each column is

Figure 6. Comparison of reconstructed Bathroom (top), Bedroom
(middle), and Kitchen (bottom) from NYUv2 RGB-D frames
(left), and a comparable reconstruction from ScanNet (right).
For each NYU scene, we show an example color frame, the
rough corresponding region of the view in the reconstructed scene
(light blue box), and a top down view of the reconstruction.
While NYUv2 reconstruction look complete from some view-
points, much of the scene is left uncovered (see top down views).
In constrast, ScanNet reconstruction have a much more complete
coverage of the space and allow for denser annotation.

predicted independently. Fig. 8 visualizes several ScanNet
test scans with voxel label predictions, alongside the ground
truth annotations from our crowdsourced labeling task.

3. Dataset Acquisition Framework

This section provides more details for specific steps
in our RGB-D data acquisition framework which was de-
scribed in the main paper. To enable scalable dataset ac-



Figure 7. Deep Neural Network architecture for our semantic voxel label prediction task. The network is mainly composed of 3D convo-
lutions that process the geometry of a scene using a 3D voxel grid representation.

quisition, we designed our data acquisition framework for
1) ease of use during capture, 2) robust reconstruction, 3)
rapid crowdsourcing, 4) visibility into the collected data
and its metadata. For 1) we developed an iPad app (see
Sec. 3.1) with an easy-to-use interface, reasonable scanning
presets, and minimalistic user controls. To ensure good
reconstruction with minimal user interaction during scan-
ning, we tested different exposure time settings and enabled
auto white balancing (see Sec. 3.1). We also established a
simple calibration process that novice users could carry out
(see Sec. 3.2), and offloaded RGB-D reconstruction to the
cloud (see Sec. 3.3). Finally, we developed web-based UIs
for crowdsourcing semantic annotation tasks as described in
Sec. 3.4, and for managing the collected data as described
in Sec. 3.6.

3.1. RGB-D Acquisition UI

Fig. 9 shows our RGB-D recording app on the iPad. We
designed an iPad app with a simple camera-based UI and a
minimalistic set of controls. Before scanning, the user en-
ters a user name, a scene name, and selects the type of room
being scanned. The user then presses a single button to start
and stop a scan recording. The interface can be toggled
between visualizing the color stream and the depth stream
overlaid on the color.

We found that the most challenging part of scanning
for novice users was acquiring an intuition as to what re-
gions during scanning are likely to result in poor track-
ing and failed reconstruction. To alleviate this, we added
a “progress bar”-style visualization during active scan-
ning which indicates the featurefulness of the region being
scanned. The bar ranges from full green, indicating high
feature count, to near-empty black, indicating low feature
count and high likelihood of tracking loss. This UI element
was helpful for quickly familiarizing users with the scan-
ning process. After scanning, the user can view a list of
scans on the device and select to upload the scan data to a
processing server. During upload, a progress bar is shown
and scanning is disabled. Upon completion of the upload,
the checksums of scan data on the server are verified against
local data and the scans are automatically deleted to provide
more memory for scanning.

Figure 9. Our RGB-D recording app on an iPad Air2 with attached
Structure sensor (showing color stream at the top and depth stream
at the bottom). The app allows novice users to record RGB-D
videos and upload to a server for reconstruction and annotation.

Auto white balancing and Exposure Settings Another
challenge towards performing reconstruction in uncon-
trolled scenarios is the wide variety of illumination con-
ditions. Since our scanning app was designed for novice
users, we opted to provide a reasonable set of presets and al-
low for manual override only when deemed necessary. By
default, we enabled continuous automatic whitepoint bal-
ancing as implemented by the iOS SDK. We also enabled
dynamic exposure selection again as implemented by the
iOS SDK, but instructed users that they could manually ad-
just exposure if necessary to make overly dark locations
brighter, or overly bright locations darker. The exposure
setting can have a significant impact on the amount of mo-
tion blur during scanning. However, we found that inex-
perienced users preferred to rely on dynamic exposure, and



Figure 8. Semantic voxel labeling of 3D scans in ScanNet using our 3D CNN architecture. Voxel colors indicate predicted or ground truth
category.



typically moved relatively slowly during scanning, making
motion blur less of an issue. The average exposure time
during scans with dynamic exposure was close to 30ms.

3.2. Sensor Calibration

Sensor calibration is a critical, yet often overlooked part
of RGB-D data acquisition. Our experiments showed that
depth-to-color calibration is an important step in acquir-
ing good 3D reconstructions from RGB-D sequences (see
Fig. 10).

Depth To Color Calibration To align a depth image D
to color image C, we need to estimate intrinsic parameters
of both sensors, the infrared camera KD and color cam-
era KC , as well as extrinsic transformation TD→C . In our
experiments we have found that using the set of intrinsic pa-
rameters of focal length, center of projection, and two bar-
rel distortion coefficients models worked well for the used
cameras. To obtain calibration parameters KD and KC we
capture a series of color-infrared pairs showing an asym-
metric checkerboard grid. We then estimate calibration pa-
rameters for each camera with Matlab’s CameraCalibrator
application. During this procedure we additionally obtain
the world positions of calibration grid corners, and use them
to estimate the transformation TD→C .

Depth Distortion Calibration Previous work suggests
that for consumer-level depth cameras there exists depth-
dependent distortion that increases as camera moves away
from the surface. Thus, we decided to augment our set of
intrinsic parameters for depth cameras with a undistortion
lookup table, as first suggested in Teichman et al. [11]. This
look up table is a function f(x, y, d), of spatial coordinates
x, y and observed depth d, returning a multiplication fac-
tor m used to obtain undistorted depth d′ = md. The ta-
ble is computed from training pairs of observed and ground
truth depths d and dt. However, unlike Teichman’s unsuper-
vised approach, which produces training pairs using care-
fully taken ’calibration sequences’, we decided to design a
supervised approach similar to that of Di Cicco [5]. How-
ever, we found that at large distances the depth distortion
becomes so severe that approaches based on fitting planes
to depth data are bound to fail. Thus to obtain training pairs
{d, dt}, we capture a color-depth video sequence of a large
flat wall with a calibration target at the center, as the user
moves away and towards the wall. To ensure successfull
calibration process user needs to ensure that the viewed wall
is the only observed surface and that it covers the entire field
of view. With the captured color-depth sequence and previ-
ously estimated KD, KC , TD→C we can recover the the
world positions of the calibration grid corners, effectively
obtaining the ground truth plane locations for each of the
captured depth images. For each pixel x, y with depth d, we

Figure 10. Comparison of calibration results. In the top row, we
show results of calibration on a flat wall. As the distance increases
the distortion becomes quite severe, motivating the need for depth
distortion calibration. In the bottom row, we show results of frame-
to-frame tracking on raw and calibrated data.

then shoot a ray through x, y to intersect with the related
plane. dt can be recovered from the point of intersection.
The rest of our undistortion pipeline follows closely the that
of Teichman et al. [11]. We found that undistorting depth
images obtained by a Structure sensor leads to significantly
improved tracking.

3.3. Surface Reconstruction

Given a calibrated RGB-D sequence as input, a fused
3D surface reconstruction is obtained using the BundleFu-
sion framework [4], as described in the main paper. The
reconstruction is then cleaned by merging vertices within
1mm of each other, and removing connected components
with fewer than 7500 triangles. Following this cleanup step,
two quadric edge collapse decimation steps are performed
to produce lower triangle count versions of each surface
mesh. Each decimation halves the number of triangles in
the surface mesh, reducing the size of the original meshes
from an average of 146MB to 5.82MB for the low res-
olution mesh. The mesh decimation step is important for
reducing data transfer requirements and improving loading
times during the crowdsourced annotation using our web-
based UI.

3.4. Crowdsourced Annotation UI

We deployed our semantic annotation task to crowd
workers on the Amazon Mechanical Turk platform. Each
annotation task began with an introduction (see Fig. 11)
providing a basic overview of the task. The worker was
then shown a reconstruction and asked to paint all object
instances with a color and corresponding label. The worker
was required to annotate at least 25% of the surface area of
the reconstruction, and encouraged to cover at least 50%.
Once the worker was done, they could submit by pressing
a button. Workers were compensated with $0.50 for each
annotation task performed.



The CAD model retrieval and alignment task began with
a view of an already semantically annotated reconstruc-
tion and asked workers to click on objects to retrieve and
place appropriate CAD models. Fig. 12 shows the initial in-
structions for an example reconstruction with several chairs.
Workers for this task were required to place at least three
objects before submitting. Once the worker was done, they
were compensated with $1.00 for each completed task.

3.5. Label cleaning and propagation

Labeling is performed on the surface mesh reconstruc-
tion, with several workers labeling each scan. To ensure that
labels are consistent across workers, we use standard NLP
techniques to clean up the labels. First, we use a manually
curated list of good labels and their synonyms to compute a
map to a single canonical label for each set, also including
common misspellings by a small edit distance threshold of
the given label. Labels with less than 5 counts are deemed
unreliable and ignored in all statistics. Labels with more
than 20 counts are manually examined and added to the list
of good labels or collapsed as a synonym of a good label.
The list of these frequent collapsed labels is also mapped to
WordNet [6] synsets when possible, and to other common
label sets that are commonly used for RGB-D and 3D CAD
data (NYUv2 [8], ModelNet [12], and ShapeNetCore [1]).

Using the cleaned labels, we then compute an aggre-
gated consensus labeling of each scene, since any individual
crowdsourced annotation of a scene may not cover the en-
tire scene, or may contain some errors. For each segment in
the over-segmentation of a scene mesh, we first take the ma-
jority vote label. This groups together instances of the same
class of objects, so we also compute a labeling purely based
on geometric overlap; that is, we greedily take the unions
of annotations which have ≥ 50% overlap of segments. We
then take the maximal intersections between these two la-
belings to obtain the final consensus.

After we have obtained the aggregated consensus seman-
tic annotation for a scene, we then propagate these labels to
the high-resolution mesh as well as to the 2D frames of the
input RGB-D sequence. To propagate the labels to the high
resolution mesh, we compute a kd-tree over the mesh ver-
tices of the labeled coarse mesh, and we label each vertex
of the high resolution mesh according to a nearest neighbor
lookup in the kd-tree. We project the 3D semantic annota-
tions to the input 2D frames by rendering the labeled mesh
from the camera poses of each frame, and follow this with
a joint dilation filter with the original RGB image and joint
erosion filter with the original RGB image.

3.6. Management UI

To enable scalability of our RGB-D acquisition and an-
notation, and continual transparency into the progress of
scans throughout our framework, we created a web-based

Figure 11. Instructions provided to crowd workers for our semantic
annotation task. Top: instructions before the beginning of the task.
Bottom: interface instructions during annotation.

management UI to track and organize all data (see Fig. 14).
When a user is finished scanning and presses the upload
button on an iPad device, their scan data is automatically



Figure 12. Instructions provided to crowd workers for our CAD
model alignment task. The worker clicks on colored objects to
retrieve and place CAD models.

Figure 13. ShapeNetCore [1] CAD models retrieved and placed
on ScanNet scans by crowd workers (scan mesh is transparent and
CAD models are opaque). From top left clockwise: a classroom,
bedroom, bathroom, and lounge scan.

uploaded to our processing server, placed into a reconstruc-
tion queue, and immediately made visible in the manage-
ment UI. As the reconstruction proceeds through the var-
ious stages of data conversion, calibration, pose optimiza-
tion and RGB-D fusion, alignment, cleanup, decimation,
and segmentation, progress is visualized in the manage-
ment UI. Thumbnail renderings of the generated surface re-
construction, and statistics such as total number of frames,
reconstructed floor area etc. are automatically computed
and can be used for filtering and sorting of the reconstruc-
tions. Similarly, during crowdsourced annotation, worker
progress and aggregated annotated surface area statistics

Figure 14. Our web-based data management UI for ScanNet scan
data.

are visible and usable for sorting and filtering of the scan
database.
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