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1. λ1 and λ2 Setting
Similar to methods in the literature (e.g., [3, 2]), we learn the hyper-parameters by cross validation (CV) on the validation

set, with the grid search in the range of 10[3:6] for both λ1 and λ2 (i.e., 4× 4 grid).

1. CUB (Easy Split) : λ1 = 105 and λ2 = 104.

2. NABirds (Easy Split): λ1 = 105 and λ2 = 104.

3. CUB (Hard Split): λ1 = 106 and λ2 = 104

4. NABirds (Hard Split): λ1 = 106 and λ2 = 105.

We find it intuitive to see higher values lambdas after cross-validation for the Hard Split since regularization becomes more
important as shared information gets smaller. Morevoer, we did not find the method very sensitive to the hyper parameters. For
instance, the performance on CUB (Easy Split) with λ1 = 105, the performance of λ2 = 103, λ2 = 104, and λ2 = 105 are
35.4%, 37.2%, and 35.9%, respectively.

2. Gradient Derivations
2.1. Gradients for Equation 5 : Fix Wt, and optimize over Wx

We name the loss in Equation 3 in the paper as L.
Let X = [X(1),X(2) · · ·X(P)] ∈ Rd×P ·dX .
Let WT

x = [W1
x;W

2
x; ...;W

7
x], where Wp

x ∈ RdX×d; and Wt ∈ Rd×dT .
(a) The first term:

||(
P∑
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X(p)TWp
x
T)WtT−Y||2F = ||XTWT

xWtT−Y||2F = Tr((XTWT
xWtT−Y)(XTWT
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We can get the derivative of the first term in the objective function w.r.t. Wp
x :
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∂Wp

x
= 2WtTTTWT

t WxX
(p)X(p)T − 2WtTYTX(p)T (2)

(b) The derivative of the second term in the objective function w.r.t. every part Wp
x .
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(c) For the third term in the objective function, we do the partial derivative for each part:
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The derivative of the third term in the objective function w.r.t. every part Wp
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Therefore, the partial derivative of the loss function w.r.t. Wp
x is:
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2.2. Gradients for Equation 4: Fix Wp
x , and optimize over Wt

The loss function is rewritten as:

L = ||XTWT
xWtT−Y||2F + λ1||WT

xWtT||2F + λ2
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The partial derivative over Wt:
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3. More Qualitative Results
We show more qualitative examples in this section.

Figure 1: Part-to-Term connectivity demonstrated on falsely labeled samples
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Figure 2: Part-to-Term connectivity demonstrated on correctly labeled samples



4. More Figures and Detailed Results
More Generalized Zero-Shot Learning Curves; see the captions for the corresponding benchmark.
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(a) CUBirds Seen-Unseen accuracy Curve on SCS split
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(b) NABirds Seen-Unseen accuracy Curve on SCS split
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(c) CUBirds Seen-Unseen accuracy Curve on SCE split
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(d) NABirds Seen-Unseen accuracy Curve on SCE split

Figure 3: Result comparison with Seen-Unseen accuracy Curves on different split settings.
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