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This supplementary material contains more details of the Paper “Exploiting Symmetry and/or Manhattan Properties for
3D Object Structure Estimation from Single and Multiple Images”:

1. In Section S1, we show our results on the imperfect annotations (i.e. the imperfect symmetric pairs).

2. In Section S2, we discuss how to impose Manhattan constraints as a regularization term for the Symmetric Rigid
Structure from Motion (Sym-RSfM) on multiple images.

3. In Section S3, the minimization of the energy function w.r.t. the camera projection matrix Rn under orthogonality
constraints is detailed.

4. In Section S4, we provide a way to recover a 2× 2 matrix B from BBT up to a rotation ambiguity.

S1. Experimental Results on The Imperfect Annotations
In this section, we investigate what happens if the keypoints are not perfectly annotated. This is important to check because

our method depends on keypoint pairs therefore may be sensitive to errors in keypoint location, which will inevitably arise
when we use features detectors, e.g. deep nets [1], to detect the keypoints.

To simulate this, we add Gaussian noiseN (0, σ2) to the 2D annotations and re-do the experiments. The standard deviation
is set to σ = sdmax, where dmax is the longest distance between all the keypoints (e.g. for car, it is the distance between the
left/right front wheel to the right/left back roof top). We have tested for different s by: 0.03, 0.05, 0.07. Other experimental
settings are the same as them in the main text, i.e. images with more than 5 visible keypoints are used.

The mean rotation errors and the mean shape errors for car with s = 0.03, 0.05, 0.07 are shown in Tables S1 and S2. Each
result value is obtained by averaging 10 repetitions. The results in Tables S1 and S2 show that the performances of all the
methods decrease in general with the increase in the noise level. Nonetheless, our methods still outperform our counterparts
with the noisy annotations (i.e. the imperfectly labeled annotations).

In summary, this section certificates our method is robust to imperfect annotations for practical use.

S2. Imposing Manhattan Constraints to The Symmetric Rigid Structure from Motion
The energy function w.r.t Rn, S (when the missing points are fixed) is:

Q(Rn, S) = −
∑
n

lnP (Yn, Y
†
n |Rn, S) = −

∑
n

(
lnP (Yn|Rn, S)− lnP (Y †n |Rn, S)

)
=
∑
n

||Yn −RnS||22 +
∑
n

||Y †n −RnAS||22 + Constant

=
∑
n

||Y−GnS||22 +
∑
n

||Y† −GnAPS||22 + Constant (S1)
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σ = 0.03 dmax σ = 0.05 dmax

I II III IV V VI VII VIII IX X I II III IV V
RSfM 0.57 0.69 0.55 1.09 0.68 1.58 0.67 1.45 0.97 0.37 0.59 0.74 0.53 1.11 0.68
CSF (S) 0.95 1.22 1.10 1.01 1.01 1.03 1.16 1.02 1.35 1.04 0.95 1.29 1.05 1.02 1.00
CSF (R) 0.95 1.27 1.07 1.05 1.05 0.98 0.95 1.04 1.05 1.16 0.95 1.24 1.07 1.04 1.07
Sym-RSfM 0.37 0.42 0.34 0.46 0.32 0.26 0.32 1.06 0.25 0.12 0.39 0.45 0.31 0.48 0.31

σ = 0.05 dmax (cont.) σ = 0.05 dmax

VI VII VIII IX X I II III IV V VI VII VIII IX X
RSfM 1.54 0.69 1.49 0.99 0.40 0.59 0.72 0.56 1.09 0.64 1.54 0.67 1.55 0.97 0.38
CSF (S) 1.04 1.09 1.03 1.37 1.02 1.04 1.25 1.05 1.16 0.98 1.03 0.88 1.02 1.20 1.04
CSF (R) 0.97 0.93 1.03 0.89 1.16 0.95 1.22 1.06 1.04 0.88 0.96 1.00 1.04 0.91 1.05
Sym-RSfM 0.28 0.33 1.13 0.28 0.13 0.38 0.37 0.30 0.49 0.28 0.35 0.33 1.01 0.26 0.13

Table S1. The mean rotation errors for car with imperfect annotations. The noise is Gaussian N (0, σ2) with σ = sdmax, where we choose
s = 0.03, 0.05, 0.07 and dmax is the longest distance between all the keypoints (i.e. the left/right front wheel to the right/left back roof
top). The Roman numerals denotes the index of the subtype. Each result value is obtained by averaging 10 repetitions.

σ = 0.03 dmax σ = 0.05 dmax

I II III IV V VI VII VIII IX X I II III IV V
RSfM 1.48 1.48 1.33 1.37 1.45 1.39 1.21 1.82 1.23 1.07 1.48 1.47 1.34 1.39 1.44
CSF (S) 1.06 2.36 1.14 0.88 1.37 1.17 0.77 1.13 2.00 0.98 1.10 1.22 1.15 0.90 1.34
CSF (R) 1.33 0.99 1.02 1.15 1.18 1.25 0.87 0.90 1.42 1.12 1.33 0.98 1.01 1.15 1.16
Sym-RSfM 1.04 0.95 0.96 1.08 0.90 1.12 0.81 1.80 0.88 0.66 1.04 0.95 0.95 1.08 0.90

σ = 0.05 dmax (cont.) σ = 0.05 dmax

VI VII VIII IX X I II III IV V VI VII VIII IX X
RSfM 1.43 1.20 1.81 1.21 1.08 1.48 1.46 1.33 1.36 1.43 1.48 1.21 1.79 1.22 1.08
CSF (S) 1.20 1.04 1.11 1.96 0.97 3.56 1.28 1.15 1.19 1.38 1.22 2.08 1.06 2.47 1.03
CSF (R) 1.25 0.87 0.88 1.41 1.11 1.31 0.92 0.99 1.15 1.17 1.25 0.87 0.88 1.55 1.11
Sym-RSfM 1.25 0.81 1.71 0.88 0.67 1.05 0.95 0.96 1.09 0.89 1.07 0.82 1.80 0.88 0.68

Table S2. The mean shape errors for car with imperfect annotations. Other parameters are the same as Table S1.

where S ∈ R3P×1,Yn ∈ R2P×1,Y†n ∈ R2P×1 are vectorized S, Yn, Y †n , respectively. A = diag[−1, 1, 1] is a matrix
operator which negates the first row of its right-multiplied matrix. Gn = IP ⊗ Rn and AP = IP ⊗ A. IP ∈ RP×P is
an identity matrix. The last equation is obtained by vectorizing the above one by vec(AXBT ) = (B ⊗ A)vec(X), and ⊗
denotes Kronecker product.

If another Manhattan direction is available e.g. if we have Si = [Sxi , S
yi
i , S

z
i ]
T , Sj = [Sxi , S

yj
i , S

z
i ]
T along y-axis, i.e.

Si, Sj have the same coordinates on x- and z-axes1. Then, we have another constraints: Si − Sj = [0, Syii − S
yj
i , 0]

T . Let
the matrix operator X = diag([1,0,1]) which selects the first and the third row of its right-multiplied matrix, we can rewrite
Eq. (S1) by encoding the Manhattan constraints as regularization:

Q(S) =
N∑
n

(
||Y−GnS||22 + ||Y† −GnAPS||22

)
+ λ||X (Si − Sj)||22. (S2)

We can further rewrite the last term of Eq. (S2) based on S (instead Si, Sj) by applying matrix operators on S and then
vectorizing it. We define the matrix operator Y ∈ RP×2 such that its i’th row in first column and j’th row in second column
are equal to 1, and otherwise 0. Then, SY selects the keypoints Si, Sj (i’th and j’th columns of S) along the Manhattan
direction y. We also use the matrix operator Z = [−1, 1]T ∈ R2×1 so that SYZ denotes Sj − Si. Thus, Eq. (S2) can be
written by:

Q(S) =
N∑
n

(
||Y−GnS||22 + ||Y† −GnAPS||22

)
+ λ||XSYZ||22.

=

N∑
n

(
||Y−GnS||22 + ||Y† −GnAPS||22

)
+ λ||(ZTYT ⊗X )S||22. (S3)

1Si and Sj are not necessary to be symmetric along y-axis.
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Taking derivative the energy function in Eq. (S2) w.r.t S and equating it to 0, the update of S under additional Manhattan
constraint becomes:

S =

(
N∑
n=1

(GTnGn +ATPGTnGnATP ) + λ(ZTYT ⊗X )T (ZTYT ⊗X )

)−1( N∑
n=1

(GTnYn +ATPGTnY†n)

)
. (S4)

Note that it is easy to generalize the matrix operator Y,Z if we have M points along y-axis. Specifically, we only
need to rewrite Y ∈ RP×M that selects the M keypoints (M columns of S) along the Manhattan direction y, and Z =
[−1M−1, IM−1]T ∈ RM×M−1 that makes each of the M keypoints minus the first keypoint.

S3. Update Camera Projection Matrix Rn Under Orthogonality Constraints
In this section, we describe how to do coordinate descent for the camera parameters Rn given the 3D structure S is fixed.
In order to minimize Eq. (S1) w.r.t. Rn under the nonlinear orthogonality constraints RnRTn = I , we follow an alternative

approach used in [2] to parameterize Rn as a complete 3 × 3 rotation matrix Qn and update the incremental rotation on Qn
instead, i.e. Qnewn = eξQn.

Here, the first and second rows of Qn is the same as Rn, and the third row of Qn is obtained by the cross product of its
first and second rows. The relationship of Qn and Rn can be revealed by a matrix operatorM:

Rn =MQn, M =

[
1, 0, 0
0, 1, 0

]
. (S5)

Note that the incremental rotation eξ can be further approximated by its first order Taylor Series, i.e. eξ ≈ I + ξ. Finally,
we have:

Rnewn (ξ) =M(I + ξ)Qn. (S6)

Therefore, setting ∂Q/∂Rn = 0, then replace Rn by Qn using Eq. (S6) and vectorize it, we have:

Rn =MeξQn ≈M(I + ξ)Qn and vec(ξ) = α+β,

α =

(
P∑
p=1

(SpS
T
p +ASpSTp AT )TQTn

)
⊗M,

β = vec

(
P∑
p=1

(Yn,pS
T
p + Y †n,pS

T
p AT )−Qn

P∑
p=1

(SpS
T
p +ASpSTp AT )

)
, (S7)

where the subscript p means the pth keypoint, α+ means the pseudo inverse matrix of α, ⊗ denotes Kronecker product.

S4. Recover Matrix B from BBT

In the following, we describe a method for recovering 2 × 2 matrix B from BBT up to a 2D rotation. Let B =[
b1 cos θ, b1 sin θ
b3 cosφ, b3 sinφ

]
, thus:

BBT =

[
(b1)

2, b1b3 cos(θ − φ)
b1b3 cos(θ − φ), (b3)

2

]
=

[
bb1, bb2
bb2, bb3

]
. (S8)

If we assume φ = 0 (due to the “fake” rotation ambiguity on yz-plane) and b1, b3 ≥ 0 (due to the “fake” direction ambiguities
of y− and z− axes), all the unknown parameters (i.e. b1, b3, θ) can be calculated by:

b1 =
√
bb1, b3 =

√
bb3, θ = arc cos(

bb2
b1b3

) + φ, φ = 0. (S9)
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