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1. Non-parametric EM Algorithm for Probabilistic Temporal Subspace Clustering
The proposed model can be formally defined as

fs ∼ GP (0,K), s = 1, 2, ..., S (1)

βns = σ(fs(tn))

s−1∏
l=1

(1− σ(f l(tn))), n = 1, ..., N, s = 1, 2, ..., S (2)

cn|βn1 , ..., βnS ∼Multi(βn1 , β
n
2 , ..., β

n
S), n = 1, ..., N, (3)

πks ∼ Beta(a/K, b(K − 1)/K), s = 1, ..., S, k = 1, ...,K, (4)

zks|πks ∼ Ber(πks), s = 1, ..., S, k = 1, ...,K, (5)

ws,n ∼ N (0, γ−1s,nI), s = 1, ..., S, n = 1, ..., N, (6)

xn|zs, ws,n,Φ,µ, αs ∼
S∑
s=1

βsN
(
xn; Φs(zs � ws,n) + µs, α

−1
s I

)
, s = 1, ..., S, n = 1, ..., N, (7)

where Multi denotes the multinomial distribution.

E step:

In this step the parameters are fixed, and the variational distributions are updated by maximizing the lower bound using a
coordinate ascent algorithm.

Update for ws,n:
One can show that q(ws,n) is a N (ms,n,Σs,n) with parameters

(Σs,n)−1 = γs,nI + (αs)
−1Zs(Φs)

>ΦsZs (8)

ms,n = γs,nΣs,n(ΦsZs)
>(xn − µs) (9)

where Zs is a diagonal matrix with entries taken from the vector zs.

Update for πs = [π1s, ..., πKs]:
One can show that q(πks) is a Beta(πks; aks, bks) where

aks = a/K + zks, bks = b(K − 1)/K + 1− zks (10)
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M step:

In this step, the parameters are computed by maximizing the expected complete-data log likelihood log p(X, T ,Θ,Ω) while
keeping the parameters of the posterior distribution Q(Ω) fixed.

Update for Φs:
One can show that Φs can be analytically updated as

Φs =

[ N∑
n=1

1[cn = s](xn − µs)m>s,nZs
]
×
[
α−1s I +

N∑
n=1

1[cn = s]Zs
(
ms,nm

>
s,n + Σs,n

)
Zs

]−1
. (11)

where 1[x] denotes the indicator function (1[x] = 0 if x is true, 0 otherwise).

Update for µs:
One can show that µs can be analytically updated as

µs =

N∑
n=1

1[cn = s]
(
xs −Φs(zs �ms,n

)/ N∑
n=1

1[cn = s]. (12)

Update for αs:
One can show that αs can be analytically updated as

α−1s =

∑N
n=1 1[cn = s]

(∥∥xn − µs −Φs(zs �ms,n)
∥∥2 + tr

(
ΦsZsΣs,nZs

))
d
∑N
n=1 1[cn = s]

. (13)

Update for γs,n:
One can show that γs,n can be analytically updated as

γ−1s,n =
m>s,nms,n + tr

(
Σs,n

)
K

. (14)

Update for cn:

cn = arg max
cn∈{1,2,...,S}

L(cn), (15)

where

L(cn) =

S∑
s=1

Eq(ws,n)[log p(xn|cn, zs, ws,n,Φs, µs, αs)] + log p(cn|tn, f1, ..., fS)

=

S∑
s=1

−αs
2

1[cn = s]‖xn − µs −Φs(zs �ms,n)‖2

+

S∑
s=1

1[cn = s]

[
D(logαs − log 2π)

2
− αs

2
tr
(
ΦsZsΣs,nZs

)]

+

S∑
s=1

1[cn = s]

[
log σ

(
fs(tn)

)
+

s−1∑
l=1

log
(
1− σ(f l(tn))

)]
(16)

Intuitively, the first two terms in Eq. 16 are data-dependent terms and the last term corresponds to the (approximate) GP-GEM
prior penalty. The value of the last term will be very negative for low-probability cluster indices, as learned through inference.



Algorithm 1 Obtaining zs
Require: {xn},Φs, αs, µs, q(ws,n), q(π1s, ..., πKs),

1: set zs = 0 and index set I = ∅.
2: for k = 1, 2, ...,K do

3: set ρ+k =
∑N
n=1−

αs

2 1[cn = s]

[
‖xn − µs − [ms,n]kΦs,k‖2 + [Φs]kk[Σs,n]kk

]
+ Ψ(as,k)−Ψ(bs,k)

4: set ρ−k =
∑N
n=1−

αs

2 1[cn = s]‖xn‖2
5: end for
6: while maxk ρ+k − ρ

−
k > 0 do

7: set k′ = arg max
k

ρ+k − ρ
−
k , I ← I ∪ {k′}, zk′s = 1, ρ+k = −∞

8: for all k 6∈ I do

9: set ρ+k =
∑N
n=1−

αs

2 1[cn = s]

[
‖xn−µs−[Φs]I [ms,n]I−[ms,n]kΦs,k‖2+tr

(
[Φs]I [Σs,n]I

)
+[Φs]kk[Σs,n]kk

]
+

Ψ(as,k)−Ψ(bs,k)

10: set ρ−k =
∑N
n=1−

αs

2 1[cn = s]

[
‖xn − µs − [Φs]I [ms,n]I‖2 + tr

(
[Φs]I [Σs,n]I

)]
11: end for
12: end while
13: return zs

It therefore eliminates these clusters from the model by shrinking L(cn) to lower values.

Update for zs:

zs = arg max
zs

L(zs), s.t. zs ∈ {0, 1}K , (17)

where

L(zs) =

N∑
n=1

Eq(ws,n)[log p(xn|cn, zs, ws,n,Φs, µs)] + Eq(π1s,...,πKs)[log p(zs|π1s, ..., πKs)]

=

N∑
n=1

−αs
2

1[cn = s]

[
‖xn − µs −Φs(zs �ms,n)‖2 + tr

(
ΦsZsΣs,nZs

)]

+

K∑
k=1

zks
(
Ψ(as,k)−Ψ(bs,k)

)
, s.t. zs ∈ {0, 1}K . (18)

where Ψ(.) denotes the digamma function. Intuitively, the first term (second line) in Eq. 18 is data dependent term, and the
last term corresponds to the Beta distribution penalty. More precisely, the value of the last term will be very small (negative)
for low-probability subspace bases, as learned through the EM inference. Hence, it removes these subspace bases from the
model by shrinking L(z) to smaller values. Since (18) is a combinatorial optimization problem, we use a greedy algorithm
(Algorithm 1) similar to Orthogonal Maching Persuit (OMP) [2] to solve (18).
In Algorithm 1, [X]I/[x]I denotes the submatrix/subvector of X/x formed by the columns/dimensions indexed by I.
Intuitively, we initialize z with zero and set sequentially each entry of z to one, scoring each entry to determine which to set to
one.
Update for fs = [fs(t1), ..., fs(tN )]

In the following, we denote fs(tn) with fsn for notational simplicity.

fs = argmax
fs

L(fs) (19)



where

L(fs) = log(fs|K) +

N∑
n=1

log p(cn = s|fs)

= −1

2
fs>K−1fs +

N∑
n=1

1[cn = s] log σ(fsn) +

N∑
n=1

S∑
l=s+1

1[cn = l] log
(
1− σ(fsn))

)
= −1

2
fs>K−1fs +

N∑
n=1

1[cn = s] log σ(fsn) +

N∑
n=1

1[cn > s]
(

log σ(fsn))− fsn
)

≥ −1

2
fs>K−1fs +

N∑
n=1

1[cn = s]
(1

2
fsn − λ(ξsn)fsn

2
)

+

N∑
n=1

1[cn > s]
(
− 1

2
fsn − λ(ξsn)fsn

2
)

≥ −1

2
fs>K−1fs + C>s f

s − 1

2
fs>Afs (20)

where
Cs =

[1
2

(1[c1 = s]− 1[c1 > s]), ...,
1

2
(1[cN = s]− 1[cN > s])

]>
(21)

and A is a N ×N diagonal matrix defined as

A =


2λ(ξs1)(1[c1 = s]− 1[c1 > s])

2λ(ξs2)(1[c2 = s]− 1[c2 > s])
. . .

2λ(ξsN )(1[cN = s]− 1[cN > s])


(22)

and {ξsn}, s = 1, ..., S, n = 1, ..., N are the lower bound variational parameters.
One can show that fs is updated as

fs =
(
K−1 + A

)−1
Cs (23)

It should be noted that since K−1 is a tri-diagonal matrix and A is a diagonal matrix, (23) can be efficiently computed in
O(N2) time.
Update for ξsn

ξsn = argmax
ξsn

1[cn = s] log σ(fsn) + 1[cn > s]
(

log σ(fsn))
)

= argmax
ξsn

1[cn > (s− 1)]

(
log σ(ξsn)− ξsn

2
+ λ(ξsn)ξ2sn − λ(ξsn)fs2

)
(24)

By setting the derivative of the objective function of the Eq. 24 with respect to ξsn equal to zero, we have

1− σ(ξsn)− 1/2 + 2ξsnλ(ξsn) + λ′(ξsn)ξ2sn − λ′(ξsn)fsn
2 = 0 (25)

Using definitions of σ(ξsn) and λ(ξsn), the above Equation can be simplified as

λ′(ξsn)
(
ξ2sn − fsn2

)
= 0 (26)

Since λ′(ξsn) is a monotonic function of ξsn for ξsn > 0 and the negative values for ξsn can be ignored [1], λ′(ξsn) 6= 0 and
hence the update equations for the variational parameters can be obtained as ξsn = fsn.
Update for η

η = argmax
η

− 1

2

S∑
s=1

fs>K−1fs − 1

2
log |K| (27)



Figure 1. Sample frames from the video scene segmentation dataset. Each row contains some frames belonging to the same scene.

Table 1. ACC with standard deviation on scene segmentation dataset. The best (bold red), the second best (red).
method Sequence-1 Sequence-2 Sequence-3 Sequence-4 Sequence-5 Sequence-6

SSC 63.27 ±3.67 65.38± 2.82 60.03 ± 3.21 71.06 ± 2.28 64.08 ± 2.81 69.99 ± 3.03
LRR 67.31 ± 2.99 70.83±2.81 62.01±2.82 70.08±2.69 65.31±2.78 70.43 ±2.67
LSR 63.28 ± 2.88 70.45±2.76 60.32 ±2.68 70.71 ±2.42 66.32 ±2.74 71.34 ± 2.12
OSC 75.37 ± 2.49 80.03 ± 3.27 63.21 ±2.60 75.36 ±2.31 70.11 ±3.96 78.44 ± 3.11
TSC 73.12 ±3.20 80.11 ±2.77 69.32 ±2.66 83.21 ±3.00 80.10 ±2.55 82.00 ±2.90

PM (our) 82.11 ±4.10 87.21 ±3.31 75.31 ±3.84 81.32 ± 2.99 79.87 ±2.81 84.64 ± 2.65

where |K| denotes the determinant of K. By setting the derivative of the objective function of the Eq. 27 respect to η equal to
zero, we have

1

2
tr

(
(ββ> −K−1)(K̂�K)

)
= 0 (28)

where K̂ is a N ×N matrix such that

K̂(i, j) = exp(−|ti − tj |), i = 1, ..., N, j = 1, ..., N (29)

and β = K−1fs. Since (28) is a highly nonlinear function of η, its update cannot be computed in closed form. However,
since η is a scalar, we simply use the one dimensional gradient descent algorithm to solve (27). It should be noted that The
complexity of computing the derivative of the objective function in eq. 28 is dominated by the need to invert the K matrix.
Since K−1 can be computed in O(N) time, the computation of the derivative of the objective function in eq. 28 requires only
O(N2) time per iteration.

2. Video Scene Segmentation Experiments
The goal of this experiment is to segment individual scenes from a video sequence. The video sequence is drawn from a

short animation freely available from the Internet Archive1. See Fig. 1 for some examples of two sequences to be segmented.
Six video sequences, containing three scenes each, are drawn from the dataset. The sequences are around 15-30 seconds
in length (approximately 450-900 frames). For this data set, we build a dictionary of the frames with 300 bases using the
Orthogonal matching Pursuit (OMP) algorithm [2] and encode each frame as a 300 dimensional sparse vector.

We also set the truncation level for the number of subspaces and their dimension to (K = 10, S = 10).
The mean performance along with the standard deviation of each method over 5 runs on the different sequences of the

datasets is shown in Tables 1, and 2, from which we can see that the proposed method has better performance than the other
1http://archive.org



Table 2. NMI with standard deviation on scene segmentation dataset. The best (bold red), the second best (red).

method Sequence-1 Sequence-2 Sequence-3 Sequence-4 Sequence-5 Sequence-6
SSC 0.5327 ± 0.013 0.5038 ± 0.008 0.4903 ± 0.016 0.5406 ± 0.009 0.5708±0.004 0.5299±0.012
LRR 0.5231±0.009 0.5083 ±0.003 0.5001±0.008 0.5608 ±0.011 0.5731±0.008 0.5143±0.009
LSR 0.5028±0.008 0.5145 ± 0.009 0.4932 ± 0.008 0.5571 ±0.006 0.5832±0.006 0.5434 ±0.012
OSC 0.5437±0.021 0.5503 ±0.017 0.5321 ±0.015 0.6036±0.004 0.6111 ± 0.006 0.5544±0.011
TSC 0.5512 ±0.011 0.5811 ±0.013 0.5232 ±0.012 0.6421± 0.008 0.6510 ±0.005 0.6100 ±0.009

PM (our) 0.6111 ±0.021 0.6321 ±0.018 0.6357 ±0.017 0.6933 ±0.011 0.6833 ±0.015 0.6877 ±0.020
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Figure 2. The results of different methods on the scene dataset when the data suffer from the loss of features. First Row: Sequence 1.
Second Row: Sequence 6. Horizontal axes denote the missing rates (%). (a),(b): ACC and NMI results for MAR features, respectively.
(c),(d): ACC and NMI results for NMAR features, respectively.

competing methods. This is due the fact that the Optimization-based methods learn the features and cluster them separately
(sequentially), while our generative model simultaneously learns the representations and clusters the data points. The key
observation is that good representations are beneficial to data clustering, with clustering results providing supervisory signals
to representation learning.

3. Additional Experiments for missing features
MAR and MNAR results (averaged over 5 runs) for subjects 13, 54, 80 and 113 of Mocap dataset and sequences 1 and 6 of

the scene segmentation dataset are provided in the Figs. 3 and 2 respectively. Not surprisingly, for both MAR and MNAR
cases, the PM is more robust to missing features than other competing methods.
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Figure 3. The results of different methods on Mocap dataset when the data suffer from the loss of features. First Row: Subject 13. Second
Row: Subject 54. Third Row: Subject 80 . Forth Row: Subject 113. Horizontal axes denote the missing rates (%). (a),(b): ACC and
NMI results for MAR features, respectively. (c),(d): ACC and NMI results for NMAR features, respectively.


