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Abstract

Below please find supplementary materials for our pa-
per. First, we restate the optimization problem in Sec. 1.
Because for some applications below it is more convenient
to use a different form of energy, we show how to transform
between the different formulations in Sec. 2.

We then provide full technical details for two applica-
tions: Multi-Region and Compact shape prior in Sections
3.1 and 3.2 respectively.

Finally, we provide additional experiments for the
squared curvature regularization in Sec. 3.3, which were
mentioned but not shown in the paper due to the lack of
space.

1. Energy
We address a general class of binary pairwise non-

submodular energies, which are widely used in applications
like segmentation, stereo, inpainting, deconvolution, and
many others. Without loss of generality, the corresponding
binary energies can be transformed into the form1

E(S) = STU + STMS, S ∈ {0, 1}Ω (1)

where S = (sp ∈ {0, 1} | p ∈ Ω) is a vector of bi-
nary indicator variables defined on pixels p ∈ Ω, vector
U = (up ∈ R | p ∈ Ω) represents unary potentials, and
symmetric matrix M = (mpq ∈ R | p, q ∈ Ω) represents
pairwise potentials. Note that in many practical applica-
tions matrix M is sparse since elements mpq = 0 for all
non-interacting pairs of pixels. We seek solutions to the fol-
lowing integer quadratic optimization problem

min
S∈{0,1}Ω

E(S). (2)

When energy (1) is submodular, i.e. mpq ≤ 0 ∀(p, q),
globally optimal solution for (2) can be found in a low-
order polynomial time using graph cuts [1]. The general
non-submodular case of problem (2) is NP hard.

1Note that such transformations are up to a constant, see Sec. 2.

2. Energy Transformation
For some applications below instead of defining the en-

ergy as in (1), it is more convenient to use the following
form:

E(S) =
∑
p∈Ω

Dp(sp) +
∑

(p,q)∈N

Vpq(sp, sq), (3)

where Dp is the unary term, Vpq is the pairwise term andN
is a set of ordered neighboring pairs of variables. We now
explain how to transform the energy in (3) to the equivalent
form in (1).

Transformation of the unary terms Dp results in a linear
term (i.e. vector) J = (jp|p ∈ Ω), where jp = Dp(1) −
Dp(0).

Let the pairwise terms Vpq(sp, sq) be as follows:

sp sq Vpq
0 0 apq
0 1 bpq
1 0 cpq
1 1 dpq

Transformation of the pairwise terms Vpq results in two lin-
ear terms H,K one quadratic term M and a constant. Term
H accumulates for each variable p all Vpq in which p is the
first argument. That is,

H = (hp|p ∈ Ω),where hp =
∑

(p,q)∈N

(cpq − apq).

TermK does the same for the second argument of Vpq . That
is,

K = (kq|q ∈ Ω),where kq =
∑

(p,q)∈N

(bpq − apq).

We define quadratic term M in (1) as mpq = apq − bpq −
cpq + dpq .

Letting U = J + H + K and M as defined above, it is
easy to show that the energy in (3) can be written in the form
of (1) up to a constant C =

∑
pDp(0) +

∑
(p,q)∈N apq .
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Figure 1. Multi-region object model for liver segmentation: (a)
schematic representation of the liver containing four distinct and
mutually excluding tumors. (b) each part of the object is repre-
sented with a separate binary layer in the graph. Each image pixel
has a corresponding node in all five layers, resulting in a quintu-
ple (FG, A, B, C, D). Interactions between corresponding nodes
of different layers are shown with black solid lines for inclusion
and blue dashed lines for exclusion. (c) summarizes six legal con-
figurations for each pixel’s quintuple and the associated multilabel
cost. All other configurations have an infinite cost due to inclusion
or exclusion violations.

3. Applications
3.1. Segmentation of Multi-Region Objects

Many objects can be described by a combination of
spatially coherent and visually distinct regions. Such ob-
jects can often be segmented using multi-label segmentation
framework, where a separate appearance-boundary model is
maintained for each label.

Recently a multi-label segmentation model has been pro-
posed in [3] for such multi-region objects. It uses a sepa-
rate binary graph layer for each label and allows encoding
many useful geometric interactions between different parts
of an object. For example inclusion of an object part within
another part while enforcing a minimal margin around the
interior part is modeled using submodular pairwise interac-
tions between corresponding nodes in different layers. Ex-
clusion constraints are in general supermodular.

In this section we focus on the non-submodular energy
for MRI liver segmentation [4] that employs the multi-
region model [3]. The image contains a liver with four dis-
tinct and mutually exclusive tumors. For completeness, we
formally define the energy for our model using the form in
(3). To convert this energy to the form in (1), see details in
Sec. 2.

Given an image with N pixels, the liver is modeled by a
graph with five layers of binary variables, corresponding to
liver (Fg), and four tumors (A, B, C, D). See Fig. 1, (a-b)

for a schematic illustration. Each layer has N nodes and
each node has a corresponding binary variable. Inclusion of
tumors within liver and exclusion constraints between tu-
mors are implemented using submodular and supermodular
inter-layer pairwise potentials respectively, see Fig. 1, (b).
In addition, we use Potts regularization on each layer. Fi-
nally we derive unary terms for the binary variables so that
they correspond to the correct multilabel appearance energy
term.

Each graph node p has three coordinates (rp, cp, lp) and a
corresponding binary variable sp. The first two coordinates
denote the row and column of the corresponding pixel in the
image (top-left corner as origin) and the last coordinate lp
denotes the layer of the node, lp ∈ {Fg,A,B,C,D}.

For Potts regularization, we use 8-neighborhood system
within each layer and the pairwise potentials are defined as
follows. Let p, q be neighboring nodes in some layer l ∈
{A,B,C,D}, then

V 1
p,q(sp, sq) = λPotts

−∆(p, q)

dist(p,q)
· [sp 6= sq].

Here dist(p,q) =
√

(rp − rq)2 + (cp − cq)2 denotes the
distance between the corresponding image pixels in the im-
age domain, ∆(p, q) is the distance between in their respec-
tive colors in the RGB color space and λPotts is the weight.

Next, we explain how to implement inclusion and ex-
clusion constraints, see Fig. 1, (b). Let p and q be two
nodes corresponding to the same pixel such that node p is
in liver (Fg) layer and node q is in a tumor layer. That is
(rq = rp)∧ (cq = cp) and (lp = Fg)∧ (lq ∈ {A,B,C,D}).
Inclusion pairwise potential V 1

p,q forces any interior tumor
part to be geometrically inside the foreground object by pe-
nalizing configuration (0, 1) for the corresponding nodes
p, q. That is

V 2
p,q(sp, sq) = λsub ·

{
∞ if (sp, sq) = (0, 1)

0 otherwise.

The tumor parts are mutually exclusive, see Fig. 1, (b).
Let p and q be two nodes corresponding to the same image
pixel but in different tumor layers. That is (rq = rp)∧(cq =
cp) and lp 6= lq where lp, lq ∈ {A,B,C,D}. Then the su-
permodular exclusion pairwise potential V 3

p,q penalizes ille-
gal configuration (1, 1). Each pixel can only belong to one
tumor. That is,

V 3
p,q(sp, sq) = λsup ·

{
∞ if (sp, sq) = (1, 1)

0 otherwise.

Since for each image pixel (r, c) we have five binary
variables (one in each layer), there are 25 possible configu-
rations of labels for each quintuple. However, our inclusion
and exclusion constraints render most of the configurations
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Figure 2. Multi-region liver segmentation. (a) input image, user scribbles - liver (blue) and tumors (green, yellow, cyan, magenta) along
with segmentation results, (b) energy vs. time plot (top) with zoom in the (bottom). We set weights λsub = λsup = 100 and λPotts = 25.

illegal, i.e. having infinite cost. Figure 1, (c) summarizes all
legal configurations for each quintuple of variables, their in-
terpretation in terms of image segmentation and the respec-
tive multilabel appearance cost Dr,c(l). Below, we define
the unary terms Dp in (3) for our binary graph so that the
binary energy corresponds to the multilabel energy in terms
of appearance cost. Let p = (r, c, l) be a node in our graph
and let Dr,c(l) be the multilabel appearance term at image
pixel (r, c) for label l. Then,

Dp(sp) =



D(rp,cp)(Fg) if lp = Fg ∧ sp = 1

D(rp,cp)(Bg) if lp = Fg ∧ sp = 0

D(rp,cp)(l)−D(rp,cp)(Fg) if lp ∈ {A,B,C,D}
∧sp = 1

0 otherwise.

If each pixel’s quintuples is labeled with legal configura-
tion, the unary appearance term on our graph is equal to the
multilabel appearance term for image pixels.

Figure 2 (a-b) shows the results. We use scribbles for ap-
pearance and as hard constraints. The top plot compares the
methods in terms of energy and running time. The bottom
plot zooms in on the most interesting part. Most methods ar-
rived at poor solutions that have violations of inclusion and
exclusion constraints. LSA-TR, AUX-DIST, AUX-DIST-U
achieve the same lowest energy, with AUX-DIST being an
order of magnitude faster.

3.2. Generalized Compact Shape Prior

In this section we provide technical details for the gen-
eralized compact shape prior in [4]. It is formulated as
multilabel energy and is subsequently reduced to a binary
non-submodular pairwise energy using reduction similar to
that in Sec. 3.1. This new model generalizes compact shape
prior proposed in [2]. Compact shape prior is useful in in-
dustrial part detection and medical image segmentation ap-
plications.

The compact shape prior in [2] assumes that an object
can be partitioned into four quadrants around a given ob-
ject center, provided by the user. Within each quadrant an
object contour is either a monotonically decreasing or in-
creasing function in the allowed direction for each quad-
rant. Figure 3, (a) shows an example of an object (along
with user provided center) that can be segmented using the
model in [2]. Allowed orientations for each quadrant are
shown with blue arrows. In contrast, the generalized model
[4] does not require user interaction, nor it assumes an ob-
ject center, allowing for a larger class of object shapes.

Instead of dividing the whole object into four quadrants,
the generalized model explicitly divides the background
into four regions as in Fig. 3, (a-bottom), corresponding to
four labels: top-left (TL), top-right (TR), bottom-left (BL),
bottom-right (BR). There is an additional label for the fore-
ground object (Fg). Each background label allows discon-
tinuities only in certain orientation as is illustrated with the
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Figure 3. Compact Shape Prior Illustration: (a-top) the model in
[2], (a-bottom) the multilabel model in [4], (b-top) - an input sil-
houette that can be modeled with the generalized model but not
with the model in [2] (see text for details), (b-bottom) demon-
strates how we split the image into five regions in the general-
ized model, (c) schematic representation of the geometric exclu-
sion constraints between the layers of our graph for the generalized
model. (d) unary terms for each layer used in our graph.

blue arrows. For example, the red region can have disconti-
nuity only in the up-right orientation.

The generalized model includes the model proposed in
[2] as a special case when the transitions between different
background labels are horizontally and vertically aligned as
in (a-bottom). However, it is more general because the dis-
continuities between the background regions do not need
to align. For example, the object in (b-top) cannot be seg-
mented using the model in [2] but is easily modeled using
the generalized compact shape prior (b-bottom). Below we
formally define the energy for our model using the form in
(3). To convert this energy to the form in (1) see details in
Sec. 2.

Given an image withN pixels, we construct a graph with
four binary layers: top-left (TL), top-right (TR), bottom-left
(BL), bottom-right (BR). Each layer has N nodes and each
node has a corresponding binary variable. Each layer is re-
sponsible for the respective region of the background and
allows discontinuities only in a certain direction. In addi-
tion, there are also exclusion constraints between the layers
to enforce a coherent foreground object. See schematic il-
lustration of the inter-layer exclusion constraints in 3, (c).

Each graph node p has three coordinates (rp, cp, lp) and a
corresponding binary variable sp. The first two coordinates
denote the row and column of the corresponding pixel in
the image (top-left corner as origin) and the last coordinate
denotes the layer of the node, l ∈ {TL,TR,BL,BR}.

There are two types of pairwise potentials in our model.
The first type of potentials is defined between nodes within
the same layer. It maintains the allowed orientation of the
corresponding region boundary. For example, top-left layer
TL allows switching from label 0 to 1 in the right and up-

ward directions. Formally,

V TL
pq(sp, sq) =

=


∞ if (sp, sq) = (1, 0) ∧ (rq = rp) ∧ (cq = cp + 1)

∞ if (sp, sq) = (1, 0) ∧ (rq = rp + 1) ∧ (cq = cp)

0 otherwise.

Similar intra-layer pairwise potentials are defined on the
other three layers.

The other type of pairwise potentials is defined between
corresponding nodes of different layers. They are respon-
sible for exclusion constraints between the different back-
ground labels. For example the red region (TL) in Fig. 3,
(a-bottom) cannot overlap any of the other background re-
gions (TR, BL, BR). Modeling such interactions results in
supermodular pairwise potentials.

Let p and q be two nodes corresponding to the same im-
age pixel but in different graph layers. That is (rq = rp) ∧
(cq = cp) and lp 6= lq where lp, lq ∈ {TR,TL,BR,BL}.
Then the supermodular exclusion pairwise potential V ex

p,q

penalizes illegal configuration (0, 0). That is

V ex
pq (sp, sq) =

{
∞ if (sp, sq) = (0, 0)

0 otherwise.
(4)

To interpret the optimal solution on our graph in terms
of binary image segmentation, we consider a quadruple of
corresponding binary graph nodes on layers TR, TL, BR
and BL. We assign image pixel to foreground object (F) if
all its corresponding graph nodes have label one, and to the
background (B) otherwise, see table in Fig. 3, (d). As in
[2], the generalized model can incorporate any unary term
in (3) defined on image pixels, e.g. appearance terms. We
now explain how to define the corresponding unary terms
on the nodes of our four layer graph.

Let Dr,c(fg) and Dr,c(bg) be the costs of assigning im-
age pixel (r, c) to the foreground (fg) and background (bg)
respectively. For each image pixel (r, c) we have a set of
four corresponding graph nodes {p = (rp, cp, lp)|(rp =
r) ∧ (cp = c)}. These nodes have the same unary term:

Dp(sp) =

{
Drp,cp(fg) if sp = 1

Drp,cp(bg) if sp = 0.

With the infinity constraints in our model, each image pixel
(r, c) can have only two possible label configurations for the
corresponding four graph nodes. It will either have three
foreground and one background labels, in which case the
image pixel is assigned to the background with a cost of
3 · Dr,c(fg) + Dr,c(bg). Or, all four nodes will have fore-
ground labels, in which case the image pixel is assigned to
the foreground with the cost of 4 ·Dr,c(fg). In both cases,
each image pixel will pay the additional constant cost of
3 ·Dr,c(fg). This constant does not affect optimization.



Finally, we switch the meaning of zeros and ones for lay-
ers TR and BL. Labels 0 and 1 mean background and fore-
ground in layers TR and BL and switch their meaning in
layers TL and BR. While the switch is not necessary, it re-
duces the total number of supermodular terms V ex in (4) to
the one third of the original number. Note, that there is prior
work on switching the meaning of binary variables to obtain
better optimization, e.g. [1, 6], however there is no known
algorithm for finding the optimal switching for energies that
are not permuted-submodular .

The generalized model has strong regularizing properties
as it does not allow complex segmentation boundary. At the
same time, due to zero costs in our intra-layer potentials,
the compact shape prior does not have a shrinking bias as
opposed to the popular length based regularization models.
This is similar to the lack of shrinking bias in convexity
shape prior [5]. The trade-off is that our model does not
encourage alignment of the boundary with the image edges.

Below we apply our compact shape prior model in the
task of binary image segmentation. Figure 4, ( left) shows
an example of an input image with a hot-air balloon along
with the user scribbles and the resulting appearance terms
for each image pixel. Blue colors denote preference for the
background and cyan-red colors - preference for the fore-
ground. While in theory our model has infinity constraints,
in practice we need to select a finite weight for our submod-
ular and supermodular pairwise potentials. Here, we used
λsub = 250 and λsup = 500 for the submodular and su-
permodular terms respectively. To better illustrate the effect
of using compact shape prior, in this experiment we did not
utilize hard constraints on user scribbles. The optimization
relies completely on the given appearance model and shape
prior. For each compared method we show the final image
segmentation.

Figure 4, (right) compares the methods in terms of en-
ergy and the running time (shown in log-scale). Most of the
methods arrived at poor or very poor solutions that have vio-
lations on monotonicity and coherence of the segment. This
is due the high weight and large number of the supermod-
ular terms. LSA-TR and AUX-DIST-U-EXP are the only
methods that could optimize such energy, with AUX-DIST-
U-EXP obtaining the lowest energy in shorter time.

3.3. Squared Curvature

Below we provide additional experiments for the
Squared Curvature application, in which we compare the
proposed extensions to standard optimization methods.

In Fig. 5, top we compare the best three extensions to
AUX and AUXP and LSA-TR. All local optimization meth-
ods start with the maximum likelihood solution based on the
appearance terms. When the weight of supermodular curva-
ture terms increases, the proposed methods consistently out-
perform LSA-TR (blue line), AUX (red) and AUXP (green).

In the bottom of Fig. 5 we compare to other standard op-
timization methods such as QPBO, TRWS, SRMP, LBP and
IPFP. All standard methods are significantly inferior even to
the worst of the proposed extensions, AUX-DIST-U-EXP.
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Figure 4. Compact Shape Prior: Left - segmentations results. The first row shows input image, user scribbles and resulting appearance
terms. Red colors show preference to foreground and blue colors show preference to background. The remaining rows show for each
method the final image segmentation. Right - comparison with other methods in terms of energy and the running time (shown in log-scale).
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Figure 5. Squared curvature model. We used Gaussian with (µ =
0, σ = 0.2) and (µ = 1, σ = 0.2) for the foreground and back-
ground appearance models and 7×7 stencil for angular resolution.
Top - comparison with AUX, AUXP and LSA-TR. Bottom - com-
parison with other standard optimization methods. All standard
methods are significantly inferior even to the worst of the proposed
extensions, AUX-DIST-U-EXP


