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Abstract

The supplementary material includes two parts. The first
part is a powerpoint presentation that includes the video re-
sults of head pose estimation and facial landmark localiza-
tion as well as an example video of the SynHead dataset.
The second part is this document where we provide more
evaluation results for facial landmark localization on the
300-VW dataset [1].

1. Evaluation of RNN Variants
We first evaluate different types of RNN for facial land-

mark localization. In addition to the Post-RNN and FC-
RNN used in the paper, we also implement and compare
to the standard RNN and LSTM for facial landmark esti-
mation. The results on the Split1 of 300-VW dataset are
shown in Figure 1 and in Table 1, where all the variants
of RNN are more accurate than the per-frame estimations.
However, the FC-RNN outperforms all the other variants
of RNN. For Post-RNN, since it uses the per-frame esti-
mates as the input, it does not exploit mid-level features
and thus, only slightly, improves the performance. Com-
pared with the standard RNN and LSTM, as we explained
in the main paper, FC-RNN maintains the structure of a pre-
trained CNN to as much as possible and introduces fewer
parameters, and thus is more robust and effective.

2. Comparison with 300-VW Challenge
We use the FC-RNN architecture in all the remaining ex-

periments for the end-to-end learning. Figures 2, 3, and
4 are the plots of the cumulative error distributions for
Splits1/2/3 of the 300-VW dataset. These plots are asso-
ciated with Table 5 in the main paper. In the three splits,
we used 80% (91) videos for training, and 20% (23) videos
for testing. As we can see, the end-to-end learning with
FC-RNN achieves the top performance in these splits. It is
also significantly better than the recently proposed Hyper-
Face [3] which employs CNN for per-frame estimation with
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Figure 1: Comparison of the variants of RNN on Split1 of
the 300-VW dataset.
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Figure 2: The cumulative error distributions for the variants
of our methods for Split1 of the 300-VW dataset. We also
compared with HyperFace [3].

a multi-tasking network.
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Table 1: Comparison of the variants of RNN on Split1 of the 300-VW dataset. The areas under the curves (AUC) and failure
rates (FR) are reported.

Per-Frame Post-RNN Standard RNN LSTM FC-RNN HyperFace [3]

AUC 0.66 0.66 0.68 0.72 0.74 0.73
FR 2.12 2.16 1.48 0.38 0.28 1.34
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Figure 3: The cumulative error distributions for the variants
of our methods for Split2 of the 300-VW dataset. We also
compared with HyperFace [3].
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Figure 4: The cumulative error distributions for the variants
of our methods for Split3 of the 300-VW dataset. We also
compared with HyperFace [3].
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